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Executive summary 

In the highly modified Murray-Darling Basin, achieving the best possible outcomes for a healthy Country and 

realising the full value of water depends heavily on how humans manage water across the landscape. We now 

live in a data rich world, with the potential for a step change in how we understand where water is in the 

landscape and where we would prefer it to be in future, and navigate a diversity of pathways to achieve better 

outcomes in the face of uncertain, constantly changing conditions. This transformation will come from progress 

over time rather than deploying one-off tech fixes. To achieve it, we need to 1) strengthen processes for 

continual improvement of knowledge systems supporting water management and 2) further integrate 

operational management across a wide variety of stakeholders to achieve environmental, social and economic 

outcomes across the region. 

This project is therefore one of a suite of One Basin CRC collaborations striving to advance data science and 

knowledge systems for water delivery in the Murrumbidgee River and the Southern Connected Basin. While it 

targets demand forecasting, the project underpins a larger pivot towards organisational adoption of 

reproducible predictive modelling capabilities in integrated storage management, within human-in-the-loop and 

continuous integration processes, and hence provides a catalyst for further innovation in this space. 

The premise for this One Basin CRC Quickstart project was to demonstrate the reliability and utility of demand 

forecasts within the partner organisations and other actors in the water resource system (e.g., river operators), 

shape the adoption and continual improvement of new cutting-edge demand forecasting algorithms and, 

connecting back to our longer-term vision, inform future research agendas and collaborations in this space. In 

the first work package, the team developed algorithms with the purpose of supporting the operational water 

orders of Murrumbidgee (MI) Irrigation and Coleambally Irrigation Cooperative Limited (CICL) and established 

assessment frameworks to support the operationalisation and continual improvement of the algorithms. The 

second package of work placed the first in context by investigating how new demand forecasting tools can 

improve water delivery across the landscape and across planning scales. This was achieved by describing uses 

cases (or decision contexts) around water delivery and integrated storage systems where demand forecasting 

technologies show promise (Figure A). 

Irrigation water ordering by irrigation districts was the focus for algorithm development and evaluation in this 

project. Algorithms for forecasting total system daily demand (for 0-7 days in advance) were developed for the 

Main Canal of the Murrumbidgee Irrigation (MI) district and the main zone of the Coleambally Irrigation 

Cooperative Limited (CICL) area of operations. Two models were developed for the Main Canal in the MI district, 

one applying a hybrid (conceptual and data-driven) approach and the other a data-driven approach. A hybrid 

model was developed for CICL. The hybrid model 1, led by the University of Melbourne team, computes daily 

crop irrigation requirements based on weather, crop type and crop area variables using the conceptual 

component of the model. The data-driven module uses these computed outputs with 7 days of lagged and 

leading weather variables to reduce the likely errors in the modelled demand. The MI data science team used 

forecast and observed weather data and lagged actual daily demand (less daily diversions) to train a data-driven 

model. The hybrid and data-driven model developed highlighted the criticality of high-quality weather forecasts. 

Forecasts are generally more accurate in dry periods where conditions are more stable than during periods of 

high rainfall. Nonetheless, both approaches produced models with a level of performance that demonstrated 

the promise of the algorithms to support the CICL and MI operation teams moving forward as they transition to 

the use of reproducible predictive modelling capabilities. Both CICL and MI have initiated internal processes to 

formalise the algorithms operationalisation and continuous improvement beyond this project.  

 
1 Publicly shared code available as: One Basin CRC (2024). irrigation-district-demand-forecasting: Public release (v0.1.0). Zenodo. 
https://doi.org/10.5281/zenodo.14428758 



QS2_FinalReport_PublicJan2025 (Edited) - NR 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. Use cases, mapped across hierarchical planning levels and spatial scales, where demand forecasting approaches could support water 

ordering and delivery. 

Beyond short term water ordering, demand forecasting advances could complement existing technologies and 

processes used by key actors involved in decisions across planning scales that relate to water ordering, delivery 

and use by environment, irrigation and consumptive users in the Murrumbidgee. The relative complexity of the 

decision contexts (Figure B) vary from use cases on focused issues (supplementary events) or users (irrigation 

districts) to more complex multi-actor, multi-scale (and ultimately transformative) use cases that lend 

themselves to exploration and advancements through the partnership model of the One Basin CRC. For example, 

achieving benefits from water delivery involves a broad range of decision makers and stakeholders. There is 

potential for even incremental changes to mechanisms for coordination and collaboration to transform 

management of the water system and river operations to improve the range of benefits to communities, 

environment and industry from water deliveries. Demand forecasting can help improve multi-stakeholder 

understanding of future water demand variability across the river system and associated uncertainties across 

time and space. 

This QuickStart project has demonstrated that contemporary data science practices in demand forecasting are 

both valuable and achievable for water network operators. The last decade has seen unprecedented investment 

of over a half a billion dollars in modernisation and efficiency projects in the Murrumbidgee River system. As a 

result, reliable and accurate streams of real-time data are now being generated by thousands of field assets. 

This investment has transformed water infrastructure in the Murrumbidgee into a data-rich environment that 

lends itself to step change innovation in delivery modalities and to support continuous improvement in 

algorithms to support network management objectives. This project has also shaped how organisations can 

leverage extensive modernisation efforts to tackle river management and demonstrated the transferability of 

the methodologies employed in this QuickStart at the river scale. With Murrumbidgee River water entitlements 

currently estimated to be worth $13 billion, the value of these entitlements is underpinned in part by how 

infrastructure is managed and water is delivered. Initiatives that improve practices, techniques, tools and 

governance by leveraging modernised assets and data are expected to be hugely consequential moving forward.  
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Figure B. Relative complexity of the use cases in relation to the advancement and uptake of demand forecasting approaches to support water 

delivery and integrated storage management in the Murrumbidgee. 

This QuickStart project serves as a catalyst for future transformative innovations, having showcased the 

potential of predictive modelling capability in network management and in transforming water management 

practices through the development of algorithms and performance assessment framework. Beyond this, the 

use cases are being used to foster discussions beyond the life of this Quick Start project on how demand 

forecasting technologies might be developed and applied to support water delivery and river operation 

decisions, communities, the environment and industry. 
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1 Introduction 

The ‘Irrigation demand forecasting and its role in multi-scale system storage control’ Quickstart project (QS2) 

was a collaboration between the One Basin Cooperative Research Centre (One Basin CRC), Australian 

National University (ANU), University of Melbourne (UoM), Murrumbidgee Irrigation (MI) and Coleambally 

Irrigation Cooperative Limited (CICL). Using the Murrumbidgee River as a case study, the project aimed to 

evaluate the current state of the art of demand forecasting algorithms and their potential role in multi-scale 

multi-objective optimisation of system storage control. Critical to the project was an emphasis on the co-

creation of the project scope and interactive development between academic and industry partners and, as 

the work progressed, reflective planning towards the adoption of models and processes. Two main work 

packages were conducted; in one, the team developed demand forecast algorithms with industry partners 

to demonstrate potential value in supporting short-term water orders and establish assessment frameworks 

to support operationalisation and continual improvement of the algorithms. The other package of work 

consisted of the development of other ‘uses cases’ or decision contexts around water delivery and integrated 

storage systems where demand forecasting technologies show promise. 

 

1.1 Project motivation and scope 

Water management in the Murray Darling has reached a watershed moment where long term extraction 

limits have been applied and substantial investment has been made in new monitoring and control 

equipment and techniques. Improving the integration of multi-stakeholder operational management of 

water storage in the landscape will broaden the option space for new water delivery solutions to emerge. As 

an entry point towards this longer-term vision, the premise for this project was to demonstrate the reliability 

and utility of demand forecasts within the partner organisations and other actors in the water resource 

system (e.g., river operators), shape the adoption (and continual improvement) of new cutting-edge demand 

forecasting algorithms and, connecting back to the longer-term vision, inform future research agendas and 

collaborations in this space. 

 

1.2 A cross-scale framing of demand forecasting 

Drawing on Integrated Storage Systems paradigm and the Hierarchical Forecasting Framework framings, this 

project takes a cross-scale view of demand forecasting spanning from farm through to catchment scales and 

daily through to seasonal or annual forecasts. A landscape view of storage includes not just reservoirs, the 

river and weirs, but also farm dams, channels, groundwater, and soil moisture. Improving demand 

forecasting and system storage control across these scales has the potential to improve benefits of water use 

for multiple purposes and improve efficiency, reliability and flexibility of irrigation water delivery.  

The Integrated Storage Systems paradigm (Burke et al., 2023) takes the perspective that the suite of artificial 

and natural storages in a system provide services, at a particular time and place, with a given level of 

assurance, and that integrated systems should be developed that coordinate and manage these storages. 

Burke et al. (2023) suggest three broad services for water storages: improving the availability of water during 

drier periods, mitigating flood impacts, and regulating flows for different uses. Volume, adaptability and 
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reliability attributes are critical for managing storage operations to effectively achieve such services 2. These 

attributes are dynamic and evolve with changes between connected storages over time and space. 

Additionally, the performance of interconnected storages depends on contextual factors that influence water 

availability and demands including catchment characteristics, land use and management and climatic factors. 

Better accounting for these dynamic relationships and co-dependencies across scales should help managers 

to identify when and which storage(s) to operate within a specific landscape and contingency actions to 

manage water demands such as reducing operation losses and reallocating water (Burke et al., 2023). Factors 

influencing storage choices include location, timing, and management actions (Yu et al., 2021).  

The Hierarchical Forecasting Framework, developed by Babai et al. (2022) for the field of supply chains, is a 

useful tool for exploring the potential roles of (and requirements for) demand forecasting across different 

planning and decision-making processes and levels. Hierarchical forecasting and combinations of forecasts 

across hierarchical levels acknowledges co-dependencies between planning levels and could contribute to 

coordinated processes across scales (Figure 1). The framework emphasises the importance of clarifying the 

role of forecasts to ensure coherence between strategic, tactical and operational decisions across short-, 

medium- and long-term time horizons. The choice of forecasting approach for different hierarchical and 

associated granularity levels should be based on accuracy considerations, subject to the constraint of data 

availability, as well as management of uncertainty (Babai et al., 2022). In the context of this project, water 

operations in the Murrumbidgee River system involve different stakeholders and sectoral uses of water 

across scales, presenting some similarities in operational logics to supply chain decision rules. Explaining 

different actors’ behaviours and their influence on the effectiveness of the water supply chain through use 

cases could help formulate objectives for demand forecasting at different scales (e.g. Mitra et al., 2022). 

Different soft computing approaches could be used as reviewed by Ghalehkhondabi et al. (2017) or Niknam 

et al. (2022). Among them, machine learning methods, used alone or conjunctively with complementary 

approaches, could address challenges of accuracy and uncertainty (Makridakis et al., 2022, Umutoni and 

Samadi, 2024). 

This project draws on the idea of a hierarchical approach of Babai et al. (2022), to demand forecasting by 

mapping out potential roles for demand forecasting (Figure 2) across different hierarchical levels 

(operational, tactical and strategic) and spatial scale (farm, irrigation district, catchment, regional). The 

strategic level is characterised by high uncertainty levels that influence decision-making and necessitate 

consideration of diverse option pathways to achieve desired societal and ecological outcomes. The tactical 

level involves decisions regarding different water supply and management options across various spatial 

levels, with the availability of (and capacity to use) different options being influential on the efficiency and 

effectiveness of processes, productions and service delivery. The operational level entails decisions related 

to controlling activities like storage maintenance, regulated water conveyance to offtakes and wetlands and 

other operational tasks. The development and evaluation of algorithms for short-term (0-7 day) forecasts in 

the Coleambally Irrigation Cooperative Limited (CICL) and Murrumbidgee Irrigation (MI) area of operations 

focus on this hierarchical level. 

 

 
2 The breadth of attributes identified by Burke et al. relate to volume, feasibility, adaptability, controllability, reliability, vulnerability, sphere of 
control, cost and environmental sustainability 
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Figure 1. Hierarchical forecasting framework from Babai et al. (2022). 

 

Figure 2. Mapping of the five use cases (blue) across hierarchical planning levels and spatial scales. The yellow frame highlights the position of 

“irrigation water ordering” (Section 4) within the two irrigation district companies (MI, CICL) in the Lower Murrumbidgee River Catchment. 

Operational forecasts are typically short-term (hours to days) and involve detailed analyses of water demand, 

usually focusing on municipal and regional water suppliers (Renzetti, 2002). Short-term predictive models 

are crucial for optimizing the performance of irrigation system components like pumps and reservoirs (Kim 

et al., 2007, Niknam et al., 2022). These forecasts inform real-time management and operation decisions and 

facilitate decisions regarding the distribution and allocation of water resources (Jain et al., 2001, Niknam et 

al., 2022). Examples of demand forecasting models include process-based conceptual models such as 
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CropWat and AquaCrop (FAO, 2014, Vote et al., 2015), data-driven models like time-series models (e.g., 

ARMAX model (Perera et al., 2016), machine learning models such as Artificial Neural Network (ANN), 

metaheuristics and support vector machines (Ghalehkhondabi et al., 2017), and hybrid models (e.g., SVN-

MLP model, Santos de Jesus and Silva Gomes, 2023). A comprehensive overview of operational demand 

forecasting models is provided in Section 4.1. 

Tactical forecasts, covering months to seasons, aim to support specific user groups in making seasonal 

decisions regarding investments (Renzetti, 2002) or human and material/infrastructural capacity (e.g. Sagaert 

et al., 2018). These forecasts address uncertainties related to demand volume variability, timing of demand 

arrivals, and unforeseen events (Nikolopoulos, 2021). Based on Nikolopoulos (2021), trends and patterns 

such as local behavioural patterns from customers and suppliers can inform the development of the 

intermittent timeseries that are necessary for tactical forecasts. Timeseries could also be further 

decomposed by isolating ‘peaks over thresholds’ data points to capture the risk associated with a 

phenomenon (Nikolopoulos, 2021). Examples of tactical forecast models include shrinkage modelling 

approaches like LASSO regression (Sagaert et al., 2018), Naïve forecasting method to forecast ten trading 

days ahead (Nikolopoulos, 2021), season-ahead hydrological forecast for reservoir management applied in 

water-scarce regions (Delorit and Block, 2020), and data-driven models to forecast groundwater table 

regimes one to five months ahead in response to hydro-climatological forcing and water management actions 

(Delorit and Block, 2020). 

Strategic forecasts provide a long-term perspective (annual to multiple years) for investigating the impact of 

structural, technological, and major policy changes on water demand (Renzetti, 2002). These forecasts can 

support strategic planning, irrigation system design, and water supply planning and management (de Souza 

Groppo et al., 2019). They contribute to gaining understanding about the factors influencing water demands 

like pricing or water policies and climate and socioeconomic contexts (Rinaudo, 2015). Examples of long-term 

demand forecasting models accounting for future socioeconomic changes include unit water demand 

analysis linked with Geographical Information Systems (Rinaudo, 2015) and ANN approaches for forecasting 

seasonal water allocations and water trading prices (Khan et al., 2010). 

 

1.3 Report structure 

This public report is the final project deliverable; this Section introduced the project motivation, framing and 

scope. The overarching methodology and Murrumbidgee case study are described in Section 2 and Section 

3, respectively.  The development, evaluation and operationalisation of demand forecasting algorithms to 

support short-term water ordering operations of CICL and MI is detailed in Section 4. Beyond this work, five 

use cases for demand forecasting to support water management across hierarchical planning levels (see 

Figure 2) and spatial scales are identified and documented in Section 5. Consideration is then given to 

deployment and adoption of demand forecasting technologies associated with the irrigation district 

algorithms and the broader use cases in Section 6. 
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2 Overarching Method 

The project consisted of four components of work (Figure 3); the UoM team led a literature review that 

canvassed available demand forecasting techniques and relevant measures of performance, maturity 

assessment and benchmarking. This review informed the selection of specific assessment criteria and 

forecasting techniques for short-term (0-7 days) water orders that were developed and tested using data for 

the MI and CICL area of operations. Multi-scale conceptualisations of the Murrumbidgee system were 

developed to create shared understanding amongst the project team of current system storage control 

(including the implications for the operations of industry partners) and as the basis for identifying and 

visualising potential opportunities and decision contexts (‘use cases’) for demand forecasting.   

 

Figure 3. Schematic of the project components and overarching methodology 

 

2.1 Demand forecasting algorithms for the CICL and MI area of 
operations 

Detailed in Section 4, the structured testing led by UoM and MI team members employed a process of 

continuous improvement of both the demand forecast models and the evaluation framework and approach. 

Multiple models were developed with their evaluation focusing on performance at critical times for MI and 

CICL. The critical times for both irrigation districts are where there is an elevated risk of underordering but 

there are also challenges posed when overordering may occur. Initial activities focused on model 

development and testing using historical data. Later activities utilised live data and the project team met 

regularly with CICL and MI operations staff to evaluate the demand forecasting algorithms and the evaluation 

framework. During this phase the team explored the potential value and challenges to adoption, 

operationalisation and ongoing adaptation and development of the algorithms by the project industry 

partners. 



QS2_FinalReport_PublicJan2025 (Edited) - NR 9 
 

2.2 Multi-scale conceptualisations and demand forecasting use 
cases 

Conceptual models were developed in two phases of the project. Initial conceptualisations provided an entry 

point for the project team to develop a shared understanding of the Murrumbidgee catchment and integrate 

smaller scale conceptualisations (e.g. irrigation districts). A catchment scale conceptual diagram (Section 3.1) 

was developed from scientific publications, industry reports or websites; it described the location of water 

in the landscape, conceptualising possible water storages as broadly as possible, including reservoirs, rivers 

including unregulated tributaries, weirs, channels, off-channel storages, groundwater, farm dams, and soil 

moisture in both irrigation areas and upstream catchments. Irrigation district conceptualisations were 

developed by MI and CICL staff participating in a project workshop held in Griffith in May 2023. These mapped 

the location of water and water storages within the districts and key decision points for the CICL and MI 

(Section 3.3) and were used in the workshop to explore the implications of different conditions for 

operations, water orders and demand forecasting in the irrigation districts. Conceptual models were also 

constructed during the development of use cases (Section 5) to represent various actors’ roles and their 

interactions, key constraints and potential ways in which demand forecasting approaches could support the 

operational, investment and strategic planning decisions of these actors. 

 

2.3 Use cases, deployment and adoption pathways for demand 
forecasting 

The identification and development of use cases involved a desktop review to situate demand forecasting 

approaches as a tool to support whole-of-water-cycle management and identify potential roles for demand 

forecasting to support water management in the Murrumbidgee catchment across temporal, spatial and 

governance scales. Five overarching themes emerged as the basis for use case development: river operations, 

conjunctive uses of surface and groundwater, coordination of river and irrigation districts’ operations, water 

markets and supplementary water announcements. Each use case outlines the actors involved, the goal of 

demand forecasting and the context in which the use case occurs, the necessary requirements for demand 

forecasting to be useful, and alternative strategies that might also achieve the goals. These use cases are 

boundary objects with which to initiate and facilitate discussions with key actors regarding potential ways in 

which demand forecasting approaches could be used to inform the delivery of multiple benefits in integrated 

storage planning and operations (and the potential value gained and challenges in their application). For each 

use case presented in Section 5, opportunities for demand forecasting approaches are mapped across 

geographic scales and hierarchical levels highlighting the co-dependency of operational water delivery 

decisions between scales. 

 

2.4 Engagement activities 

As the industry partners for this project, and the intended user of the demand forecasting algorithms and 

evaluation framework developed in Section 4, data science and operations staff from CICL and MI have been 

the focus of project engagement. These activities have occurred through fortnightly project team meetings, 

a conceptual modelling workshop in Griffith in May 2023 and, as both the algorithms and evaluation 

framework matured, regular meetings with the UoM and MI model developers and the CICL and MI 

operations staff to evaluate and explore the operationalization of the algorithms and framework. Extensive 
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engagement with non-partner organisations was not the priority of this one-year project although the 

modelling team from WaterNSW were engaged with at the commencement of the project and again in July 

2024 to communicate the objectives, outputs and outcomes from the project. Our intent is that engagement 

with WaterNSW will continue beyond the project with the initiation of the Multiple Benefits project 

(CRC058). An overview of this Quickstart project and the identified use cases where demand forecasting 

could contribute to water delivery and operations across the Murrumbidgee landscape was presented at the 

Multiple Benefits project inception workshop in July 2024.  

We recognise the importance of considering potential research impact and opportunities related to the First 

Nations people of the Murrumbidgee and acknowledge that they have often been locked out of 

conversations and decisions around irrigation development and water delivery operations on their 

country. The irrigation districts of MI and CICL both lie on the lands of the Wiradjuri People. Downstream, 

the western end of the catchment includes country of several smaller nations including the Barapa Barapa, 

Muthi Muthi, Nari Nari, Nyeri Nyeri, Wadi Wadi, Wamba Wamba, Weki Weki, and Wolgalu3. No engagement 

with First Nations peoples was conducted about this Quickstart project due to the short timeframe for the 

research, no prior relationships between the researchers and First Nations persons on country, and our intent 

to be guided by the One Basin CRC through their First Nations Engagement principles and the One Basin CRC 

engagement strategy that was being developed in parallel with the CRC Quickstart projects. With support 

from One Basin CRC staff, planning has commenced for First Nations engagement with peoples from the 

Murrumbidgee for the newly commenced or ongoing One Basin CRC activities in the catchment, including 

the Multiple Benefits project (CRC058). 

 

  

 
3 https://www.mdba.gov.au/basin/catchments/southern-basin-catchments/murrumbidgee-catchment, accessed 16 

September 2024 

https://www.mdba.gov.au/basin/catchments/southern-basin-catchments/murrumbidgee-catchment
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3 Murrumbidgee case study 

3.1 Geographic boundary of the case study 

The catchment scale conceptualisation shown in Figure 4 was adapted from the Murrumbidgee River profile 

produced by the Murray Darling Basin Authority (MDBA)4. The focus was to describe the location of water in 

the landscape, conceptualising possible water storages as broadly as possible, including reservoirs, rivers 

including unregulated tributaries, weirs, channels, off-channel storages, groundwater, farm dams, and soil 

moisture in both irrigation areas and upstream catchments. The MDBA diagram included an elevation axis, 

distance axis and system elements above Burrinjuck dam which has been removed from the 

conceptualisation in Figure 4. The latter were removed as the geographic boundary of this project is the 

Blowering and Burrinjuck Dams and the catchment and river systems below them. Added to the diagram 

were Blowering Dam and the Tumut River below the dam, groundwater management areas, two Ramsar 

wetlands (Fivebough and Tuckerbill swamps), the governance of key water assets (e.g. owner or operator of 

storages), the return flows from Tombullen Storage to the Murrumbidgee River and the estimated volume 

of storages across the system. 

 

3.2 Key actors in the Murrumbidgee 

This section outlines the key actors involved in the water delivery for multiple benefits in the Murrumbidgee 

Region, drawing on a review of published and grey literature conducted to inform the use case development. 

The main actors include NSW Department of Climate Change, Energy, the Environment and Water (NSW 

DCCEEW), WaterNSW, MI, CICL and the Commonwealth and NSW Environment Water Holders (EWH) and 

environmental managers. These actors and irrigation district members are described further below. 

Additional stakeholders include private irrigators in the Lower Murrumbidgee River catchment, participants 

in water markets in the Murray River system, groundwater users within and outside of the Murrumbidgee 

Catchment, Snowy Hydro Limited and First Nations and broader communities, unregulated water users and 

other farmers and operating bodies in the Murrumbidgee Catchment. During the project proposal 

development, Agritech providers were identified as potential investors in demand forecasting and system 

storage control. 

 

 
4 https://www.mdba.gov.au/sites/default/files/publications/murrum-geographic-profile.pdf, accessed 2 September 2024 

https://www.mdba.gov.au/sites/default/files/publications/murrum-geographic-profile.pdf
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Figure 4. Geographic boundary of the Murrumbidgee case study.
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3.2.1 Irrigation Infrastructure Operators 

CICL and MI are the two main irrigation infrastructure operators (IIO) in the Lower Murrumbidgee 

River catchment. Their main responsibilities include: 1) daily orderings to WaterNSW for weekly 

deliveries of water to respective offtakes, 2) daily deliveries to customers, including WaterNSW, 

irrigators, and environmental assets based on agreements with Environmental Water Holders and 

NSW DCCEEW, 3) groundwater level and quality monitoring, 4) water quality within assets, 5) 

maintenance of assets (mostly in winter), 6) system enhancement for managing water demands 

during the peak season and maintenance time and, at the direction of local flood authorities, ensuring 

flood security, 7) ordering to WaterNSW and announcement of supplementary water events to 

respective customer bases (MI, 2016, CICL, 2023). For the announcement of supplementary events, 

they are themselves based on NSW DCCEEW Water announcements, with the specification of the 

time, location and duration of the events available from the WaterInsights website (DPI, 2015) 5. 

Additionally, CICL is responsible for diverting water to the Tombullen storage in accordance with 

WaterNSW orders. Tombullen storage is principally used to ensure water deliveries to private 

irrigators between Darlington Point and Maude Weir (CICL, 2023).  

Water orders are placed daily from WaterNSW at the irrigation district offtakes (two for MI and one 

for CICL). The water is then diverted in storages and channel systems to ensure reliable supply to 

irrigators, especially during the peak season. During winter, the main canal is closed during winter for 

CICL (CICL, 2023). To reduce the company’s vulnerability to high flow events, limit rain rejections, and 

ensure timely water deliveries to customers, MI has built a new storage at the entrance of its system, 

the Roaches Surge Reservoir (MI, 2021).  

Key decision points for water operations include factors such as water availability in channels and 

storages under different climate conditions; crop types, planting time and planting area; 

announcements of allocations and supplementary events; daily orders from customers; groundwater 

availability and likeliness to be used; timing for water orders (winter, summer) and crops’ stage of 

development; timing for storage and channel maintenance; timing and likeliness to manage excess 

water within irrigation district systems, timing of supplementary events and risk of restriction 

following them (MI, 2016, CICL, 2023). 

 

3.2.2 WaterNSW 

WaterNSW is the State agency responsible for 1) managing water in both natural and artificial storages 

and weirs, 2) crediting the accounts of licensed water users and delivering water to licensees, including 

environmental flows, 3) ensuring that metering and compliance activities help water users understand 

their rights and obligations (Aither, 2017), 4) monitoring raw water quality of surface and groundwater 

systems, 5) announcing exceptional events such as supplementary water events and restrictions, 6) 

ensuring required end of system flows at Balranald and Yanco Creek are met (DPI, 2015)6), 7) collecting 

manual orders in anticipation of announcements of supplementary water events (MI, 2016, CICL, 

2023), 8) managing rain rejection events at Bundidgerry Creek if water flows are reaching channel 

capacity (MI, 2016).  

 
5 WaterNSW (2023). Learn how water is managed. WaterInsights. Accessed 20 April 2024. https://waterinsights.waternsw.com.au/learn 

6 NSW Government (2024). Schedule 1 - Roles and Responsibilities Schedule. Roles and Responsibilities Agreement. Accessed 20 April 2024. 
https://water.dpie.nsw.gov.au/about-us/how-water-is-managed/roles-and-responsibilities-
agreement#:~:text=The%20Agreement%20sets%20out%20in,of%20agencies%20against%20their%20responsibilities.  

https://waterinsights.waternsw.com.au/learn
https://water.dpie.nsw.gov.au/about-us/how-water-is-managed/roles-and-responsibilities-agreement#:~:text=The%20Agreement%20sets%20out%20in,of%20agencies%20against%20their%20responsibilities
https://water.dpie.nsw.gov.au/about-us/how-water-is-managed/roles-and-responsibilities-agreement#:~:text=The%20Agreement%20sets%20out%20in,of%20agencies%20against%20their%20responsibilities
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Key decision points include water availability and levels in rivers, creeks and channels as well as 

storages under different climate conditions throughout the year; timing and duration of maintenance 

work in regulated surface water systems (DPI, 2015); climate scenario and rules for delivering water 

to the environment and ensure Lower Murrumbidgee flows (SKM, 2011); weekly orderings (MI, 2016, 

CICL, 2023). 

The potential interest of WaterNSW to invest in or use the outputs of this project are hypothesised to 

inform adoption, regulation and cooperation on demand forecasting and system storage control. For 

this potential to eventualise, the project would need to identify demand forecasting use cases and 

their implications which might include interactions between algorithms for regulation change. 

Opportunities at the river operation scale need to be identified which can be drawn on to scale up to 

other river systems; in the Murrumbidgee context opportunities should leverage and add value to the 

Computer Aided River Management system for the Murrumbidgee River (CARM) 7. 

 

3.2.3 NSW DCCEEW 

NSW DCCEEW is the NSW State government lead agency for developing a strategic approach to water 

at the State, regional and metropolitan levels. Its key responsibilities include 1) assessing water 

availability (surface and groundwater) and announcing Available Water Determination (AWD) from 

the 1st of July of each year and periodically throughout the year, 2) announcing supplementary water 

events, 3) setting trade and other management rules related to water trading and 4) maintaining and 

managing water accounts and reporting (Aither, 2017, DPI, 2015). 

When assessing future water availability (i.e., for a year), NSW DCCEEW considers various factors such 

as BoM three month seasonal outlook (July to September) as well as the likelihood of rainfalls across 

mainland Australia, temperature likelihood across the Murrumbidgee Catchment, ENSO outlook and 

associated alert level for El Ninõ events. Decision points for assessing future water availability include 

water levels in storages, minimum expected natural inflows into storages, required annual releases 

(RAR) by Snowy Hydro Limited into the Blowering Dam, minimum volume to run the river (including 

evaporation and transmission losses and Lower Murrumbidgee flows), water sharing plan 

requirements (including storage reserves and credits to environmental water allowances (EWA)), 

forecast volume of carryover in general security (GS) and conveyance accounts (DPI, 2015)8. 

 

3.2.4 Environmental Water Holders 

The Commonwealth and NSW environmental water holders (EWH) are primarily responsible for 

environmental management in the Murrumbidgee River Catchment. The EWH are tasked with 

maintaining and/or restoring connectivity between key riverine and wetland ecosystems in the 

Murrumbidgee River catchment. This includes water provisioning to key ecosystems in both the 

Murrumbidgee and Murray Rivers to ensure their functionality, services and biodiversity conservation. 

A reserve is agreed upon with NSW agencies to ensure end-of system flows to Balranald and Billabong 

 
7 The CARM (Computer Aided River Management) system was developed by DHI consulting for WaterNSW to enhance weirs and dams’ 
operations in the Murrumbidgee River system and reduce operation losses. CARM integrates models reproducing key catchment and river 
processes with real-time measurements with the objective being to provide river operators with an overview of current and forecasted 
water inflows to inform operation decisions and ensure reliable deliveries to relevant locations at the right time. 

8  NSW Government (2024). Water allocation guides for major river valleys – Murrumbidgee Regulated River Water Source. Resources 
assessment process. Accessed 20 April 2024. https://water.dpie.nsw.gov.au/our-work/allocations-availability/allocations/how-water-is-
allocated/resource-assessment-process 

https://water.dpie.nsw.gov.au/our-work/allocations-availability/allocations/how-water-is-allocated/resource-assessment-process
https://water.dpie.nsw.gov.au/our-work/allocations-availability/allocations/how-water-is-allocated/resource-assessment-process
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Creek. Watering actions are based on four main climate scenarios: extreme dry, dry, moderate and 

wet (Commonwealth, 2023).  

The responsibilities of the EWH include 1) supporting watering actions to restore natural flow regimes, 

ensure connectivity between river, creeks and wetlands, and maintain function, services and 

biodiversity conservation, 2) managing environmental water allocations, including participation in 

water markets, or cancelling watering actions during extreme-rainfall events and/or availability of 

unregulated water, 3) ordering and agreeing on special releases to the Environment with irrigation 

companies (Commonwealth, 2023). 

Key decision points relate to the consideration of climate scenarios and associated watering options; 

considering extreme rainfall events and availability of unregulated water, potentially influencing carry 

over decisions; evaluating unused water and ability to trade supplementary and general security (GS) 

entitlements; determining watering needs; fulfilling obligations to deliver water on-behalf of OEH; 

exploring potential for piggy backing or other ‘en route’ types of options, especially post-

supplementary events; accounting for physical/operation constraints and infrastructural works when 

considering watering actions (SKM, 2011, Commonwealth, 2023). Two main challenges for ensuring 

sustainable environmental flows consist of the lack of consideration of antecedent watering condition 

for the four climate scenarios to anticipate when and where to prioritise environmental flows, on the 

one hand, and assumptions of meeting broad scale medium to long-term ecological and hydrological 

objectives can be achieved solely through environmental flows, on the other hand (SKM, 2011). 

 

3.3 Irrigation districts 

This subsection documents the irrigation scale conceptualisations developed by the project partners 

(led by MI and CICL) at a workshop in Griffith in May 2023. The location of water and water storages 

within the districts were mapped along with the key decision points for the organisations. The 

conceptualisations were used to explore the implications of different conditions for operations, water 

orders and demand forecasting in the irrigation districts. 

3.3.1 CICL Area of Operations 

A map of the CICL area of operations is provided in Figure 5. Water in the main CICL irrigation district 

is managed through a Total Channel Control (TCCTM 9) system during the period of operation (mid-

August to mid-May). CICL operates on a 7-day water order with WaterNSW, reflecting the time for 

water to travel from Burrinjuck and Blowering dams. Within the main area of operations, all users can 

give two-hour notice of orders or cancellations. The WCC, DC800 and CCD are channels that can drain 

water out of the main area or deliver water for stock or environmental purposes.  

The environmental water holder (EWH) usually provides two to three weeks’ notice and gives leeway 

on the specific timing which supports CICL to deliver environmental orders as part of its total order. 

Yanco Creek comes off the Murrumbidgee River above the CICL main canal offtake although CICL can 

deliver water to the Yanco system via its network. Delivering 300 ML/day through CICL main canal and 

the Coleambally Catchment Drain (CCD) outlet saves WaterNSW time to get water into the Yanco 

system. Water for operational purposes or to meet environmental targets can also be delivered for 

 
9 https://rubiconwater.com/irrigation-district-solutions/, Accessed 13 January 225 

https://rubiconwater.com/irrigation-district-solutions/
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WaterNSW to the Yanco system via the DC800 drain. With two hours’ notice from WaterNSW water 

can be moved into Tombullen Storage. 

 

3.3.2 MI Area of Operations 

The MIA encompasses 378,911 ha of land; the 190,000 ha irrigated area consists of permanent 

plantings (e.g. grapes, citrus) and seasonal broadacre crops (e.g. rice, cotton). Three zones are defined 

in Figure 6 - the Wah Wah, Main and Sturt. The Wah Wah area is supplied from Barren Box, Main and 

Sturt systems. The Sturt subsystem is mainly broadacre whilst the main zone encompasses Leeton and 

Griffith (with both towns solely reliant on the river) and much of the horticulture that is centred 

around the towns. Environmental water is supplied to 12 sites including two Ramsar sites (Fivebough 

and Tuckerbill Swamps). 

MI operates all-year round on seven-day ordering to WaterNSW reflecting the time it takes for orders 

to travel from the Burrinjuck and Blowering Dams to the MI offtakes. Members can make orders to 

MI with 24 hours’ notice and changes to their orders with two hours notice. MI operates a 24h/day 

control room, the 2-hour changes to orders often balance out to some extent, and MI has some surge 

capacity to help if there is a shortage. Temperature and the presence or absence of (un)predicted 

rainfall are common reasons for changes in orders by irrigators and any mismatch with the 7-day 

forecast. Horticulture with drip irrigation is centred around the towns where people might irrigate on 

different schedules depending on other work or time demands.  To bridge the potential mismatch in 

the timing of orders between members and MI and MI and WaterNSW, MI undertake demand 

forecasting informed by the areas of plantings. Since 2013, MI have invested heavily in automation 

and high resolution and collecting accurate data on what water customers are taking. MI has also 

invested in 24 Rubicon weather stations across the network to capture real time weather data. 
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Figure 5. Map of the CICL Area of Operations 
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Figure 6. Murrumbidgee Irrigation area of operation, showing the three main zones: the Main Canal, Sturt and Wah Wah 

 

3.3.3 Decision contexts 

Following the development of the irrigation district conceptualisations, participants at the May 2023 

Griffith workshop explored how decisions change under wet and dry conditions, supplementary 

events and rain rejections and the implications of these decisions for demand forecasting in the 

irrigation districts. CICL members typically operate family farms and predominantly irrigate during the 

week; MI customers include these types of irrigators but also small farm operators and hobby-farmers 

who may irrigate during the weekend (CICL, 2023, MI, 2016). Apart from MI and CICL farmers, private 

irrigators are also significant water users. Tombullen provides WaterNSW with a flow augmentation 

option for usage below Gogeldrie Weir or between Darlington Point and Balranald.  

Decision points for regulated water orders and alternative supply options are related to soil quality; 

crop types; planting area; planting time; irrigation system; on-farm water storage, water availability 

and water levels in storage(s); groundwater accessibility and dependency; energy costs; water prices; 

timing and opportunities for unregulated water (including supplementary events); in-crop rainfalls; 

reliability of entitlements; number of participants in water markets and heterogeneity of water uses 

for primary productions; trade rules within and between systems; opportunities for trading water 

based on system connectivity; location in the catchment; climate variability; ENSO and consecutive 

dry-wet year (MI, 2016, CICL, 2023, Aither, 2017). 

Wet years: CICL prepare for flooding by checking infrastructure (namely the regulators) is in working 

order.  They have forewarning 3 or more days before overland flows are seen in the irrigation district. 

If needed, water can be drained out the CCD and DC800 to the Yanco Creek system and west out the 

Billabong Creek system. Ordering in such times involves trying to make a determination of what 
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customers need. In preparation for rain event, operators do not stop the river offtake straight away; 

this is done if people stop taking water and the TCC responds to levels in the main channel. 

In the MIA, high flows in Mirrool Creek – which ends up in Barren Box – can cut off other supply 

channels within the district. In a high flow or if a flood is declared, MI works with the local flood 

authority to mitigate and manage the flows. In these wet periods, higher allocations are available and 

there is high demand for water.  

Dry years: In dry years, MI tries to keep Barren Box empty as it will otherwise lose a lot of water to 

evapotranspiration. They work with customers, particularly those between Barren Box and Wah Wah, 

to coordinate orders so that ‘every last drop’ goes to customers and losses over time are minimised. 

This means understanding the needs of customers, particularly those with permanent crops at the 

bottom of the system. As these years have low demand, the TCC is turned off, the regulators are laid 

flat and channels are allowed to drain; water is only put down the channel when it is needed. Demand 

forecasting is relatively simple in these times as the variability in what customers order and take is 

reduced.  

In dry times, the CICL system is run at minimum levels and some channels can be shut off. In 2019/20, 

CICL turned off the automated ordering system and switched to a manual approach, were able to 

operate off the bottom of (e.g.) pools to save water and (for the first time) halted the ability for 

members to lodge two-hour orders, etc. As per normal operation of the WCC channel, the stock water 

supply system was on a rotation-based ordering with two rostered events in the year.  

Supplementary events: Supplementary announcements pose a challenge for both CICL and MI in their 

operations. Supplementary events during a normal or dry year create more uncertainty than if they 

occur in wet years as there is a heightened risk that restrictions might occur once the supplementary 

event ceases and the timing or eventuality of follow-up rains is highly uncertain. A supplementary 

event can also have the same effect as a major rain event in the CICL and MI systems, where all their 

customers get on the same cycle for their orders, with the flow-on impacts on operations and updating 

the 7-day orders to WaterNSW. 

Rain rejections: Rain rejection can pose a problem for operators as the ‘ramp-up’ to approaching rains 

might see customers hold off on making or cancelling orders. Reduced orders as the rain event starts 

leads to a mismatch in the customer aggregated demand and the 7-day order to WaterNSW and 

widespread decent rains can see the orders almost completely cut. If this happens in the MI system, 

the channels overfill and water moves back up Bundidgerry Creek. If the storage capacity of 

Bundidgerry is already full then the 100-year-old gates have to be shut manually. Farmers do look at 

the 7 days weather forecast and a non-rain event is equally problematic for CICL and MI as a big rain 

event. However, in this situation, customers may have been relying on the rainfall to arrive (e.g. at 

planting time) after which they would need irrigation a set period later. Without the rainfall event, 

there may be no point in making the subsequent order.  

Understanding their customers: The crop systems and irrigation patterns in the MI and CICL area of 

operations are quite different reflecting the decisions of their customers ( 

Table 1). Coleambally irrigators are mostly groups of families that own their farms and water during 

the week. They also tend to have recycling systems, allowing them to pump runoff and recirculate it 

around their farm. Whether or not they recycle water depends on the cost of the water relative to the 

cost of operating the pumps. Some customer behaviours might seem non-intuitive at first glance, such 

as decisions to keep growing crops like rice or cotton when conditions do not suit. In some cases, 

farmers might have to plant crops if they are locked into contracts or face the prospect of washout 
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fees. In the MIA, there are many irrigators who irrigate on the weekend, either because they have off-

farm jobs during the week or they decide to use off-peak power to pump water. Different customers 

can take very different approaches to how they buy and use water (e.g. the balance of entitlements 

and purchasing water from the market). 

Table 1. Key factors influencing decisions of member irrigators in the MIA or CICL areas 

Superscripts denote specificity of factors; A – annual/broadacre crops; D – dry years; CICL – CICL member irrigators; MI – 
irrigators in the MIA; P – perennial crops; W – wet years; WCC – West Coleambally Channel customers 
 

 Key decisions 

Irrigated area Crop choice(s) Buy or sell water Surface water order Order 
cancellation 

Decision 
timeframe 

A Early-October to mid-November 
P Annual to multi-year 

 Growing season; 2 CICL 
to 24 MI hour 
notification; WCC 7 day 
notification 

Growing 
season; 2 hour 
notification 

Indicative influencing factors 

Environmental 
/ climate 

Climate outlook; 
catchment 
conditions; dam 
volumes; soil 
moisture 

 Climate outlook Soil moisture; 
anticipated (forecast) 
rainfall; temperature; 
humidity 

Rain rejection 
events; non-rain 
‘events’; 
temperature 

Agronomic    Crop water 
requirements; 
irrigation system 

 

Surface water Allocation 
determination; 
announcement 
timing; carryover 
volumes 

 Cost of surface 
water 

Available water 
allocation 
Supplementary 
announcements 

 

Groundwater   Cost of 
groundwater 

Groundwater salinity  

Market Commodity prices 
Input costs 
Contractual 
arrangements 
Washout fees 

Commodity prices 
Input costs 
Contractual 
arrangements 

Price of 
temporary water 

Price of temporary 
water; Cost of 
allocated water 
CICL Electricity cost 
(water recycling) 
MI Electricity cost (off-
peak irrigator) 

 

Irrigator / 
enterprise  

 Identity / past 
experience 

Identity / desire 
to farm 
Farm typology 
Purchasing power 
Balance of 
entitlements 

Farm typology 
Farm infrastructure 
(e.g. outlets) 

 

Irrigation 
district 

   D,MI MI order 
coordination needs 
Collated 
supplementary orders 
Channel constraints 
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4 Demand forecasting for river ordering 

This section reports on the activities and achievements in developing and operationalising short-term 

demand forecasting algorithms to support river ordering by IIO. In Section 4.1, the literature review 

describes the prevailing approaches to crop water demand modelling and identifies the potential 

value of hybrid methodologies. The review also highlights a predilection to applying a small number 

of metrics to ‘evaluate’ model performance raising the concern that there is limited evidence in the 

scientific literature that reported evaluation approaches explicitly reflect the decision contexts of 

potential users of demand forecasts. These findings, together with project team discussions around 

the decision context for CICL and MI river orders, informed the research design and methodology for 

this component of the project (Section 4.2). Section 4.3 describes the case study data used in the 

development and evaluation of the UoM-developed hybrid models (Section 4.4) and MI-developed 

data-driven models (Section 4.5). The section concludes with a discussion on the process and 

outcomes for the operationalisation of the algorithms and evaluation framework (Section 4.6). 

 

4.1 Review of demand forecasting and assessment 
techniques 

Effective and sustainable management of water supply plays a critical role in addressing the societal 

needs for health and well-being in both rural and urban environments (Niknam et al., 2022). It holds 

significant importance in areas such as public health, the economy, food production and irrigation 

(Vijai and Sivakumar, 2018). Having accurate information about water demand is vital for effectively 

managing water resources in extensive agricultural regions. Predicting water demand offers significant 

benefits in terms of designing, managing, and upgrading water supply and distribution systems 

(Pulido-Calvo and Gutiérrez-Estrada, 2009). An irrigation system that provides water on demand 

enables users to enjoy greater flexibility compared to other delivery schedules. Typically, water 

distribution system operators create a 24-hour operating plan to schedule pump and valve control 

settings (Alvisi et al., 2007). Consequently, irrigation system operators need an efficient and 

dependable system to promptly meet users’ immediate water requirements. The travel time from the 

reservoir to the irrigated fields presents considerable difficulties for irrigation system operators. 

Irrigation system operators usually encounter challenges in promptly responding to rapid fluctuations 

in irrigation demand caused by sudden weather changes, such as extremely hot periods and rainfall 

events (Perera et al., 2015). Additionally, the demand fluctuates according to the decisions farmers 

make in response to other pressures and opportunities, further complicating the task for irrigation 

system operators.  Efficient demand management and forecasting techniques are proposed as tools 

to support operators to deal with these problems.  

Water demand forecasting can be done for strategic, investment (termed tactical in Section 1.2) or 

operational reasons (Renzetti, 2002). Strategic forecasts provide the longest and broadest perspective 

to investigate the impact of structural, technological, and major policy changes (Renzetti, 2002). They 

can be utilized for strategic planning, designing an irrigation system, and water supply planning and 

management (de Souza Groppo et al., 2019). Operational forecasts are short-term (hours to days) and 

detailed analyses of water demand usually focusing on municipal and regional water suppliers 

(Renzetti, 2002). Short-term predictive models have a significant impact on the optimal performance 
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of pumps and reservoirs in the irrigation system (Kim et al., 2007, Niknam et al., 2022). In other words, 

short-term forecasting of water demand can provide useful information for planning real-time 

management and operation of important components in the irrigation system. It also provides 

valuable information to decision-makers regarding the distribution and allocation of water resources 

when required (Jain et al., 2001, Niknam et al., 2022).   

There are two major approaches for forecasting irrigation water demand: process-based (conceptual) 

methods or data-driven (system theoretical) approaches. Conceptual modelling approaches develop 

daily water demand requirements for crop irrigation based on rates of percolation and 

evapotranspiration that have been predicted at the stage of irrigation planning (Pulido-Calvo and 

Gutiérrez-Estrada, 2009). Data-driven approaches involve using a model to establish a relationship 

between inputs and outputs without detailed consideration of the internal structure of the physical 

process (Pulido-Calvo and Gutiérrez-Estrada, 2009). Many researchers have investigated and 

implemented these techniques to predict short-term water demand in recent years (Niknam et al., 

2022, Perera et al., 2015). With the advancement in artificial intelligence, several hybrid models and 

neural network models have been developed and these offer novel possibilities for prediction (Kavya 

et al., 2023).  

This review includes the most used short-term demand forecasting models at a temporal time step 

from one to 10 days and a spatial scale from farm to the system level, influencing factors for the 

models, data requirements, and main indicators to evaluate the model’s forecasting accuracy. 

 

4.1.1 Exogenous factors influencing predictive models 

The factors influencing predictive models are many and range from weather conditions to the 

geographical location of the target area. Climatic or weather extreme conditions have a prominent 

relationship with agricultural water use (Niknam et al., 2022). Both conceptual and data-driven models 

are based on historical and forecast weather data. Rainfall, temperature, humidity, and wind speed 

are standard inputs to the predictive models. Many models used short-term weather forecasts, 

especially rainfall and evapotranspiration to make irrigation decisions (Aly and Wanakule, 2004, 

Forouhar et al., 2022). Wang et al. (2015) concluded that the irrigation water requirement and 

prediction are mainly affected by interlinked climate change and human factors (irrigation area, 

management practices, planting structure, and agricultural water saving level). The result from 

Brentan et al. (2017) showed a correlation between the weather factors, mainly temperature, relative 

humidity, and hour of the day, as the most relevant factors for forecasting demand. Perera et al. (2016) 

determined the water supply deficit as the exogenous variable which reflects the effect of atmospheric 

forcing on irrigation demand as a combination of precipitation and evapotranspiration. The forecast 

and observed uncertainties in precipitation and evapotranspiration contribute to the irrigation 

demand uncertainties (Perera et al., 2016). For residential or urban water demand prediction, other 

influencing factors include the economic, socio-demographic, household properties, technological, 

location, and geographic factors (Niknam et al., 2022). 

 

4.1.2 Short-term irrigation demand forecast models 

4.1.2.1 Process-based (conceptual) models 

Process-based (conceptual) models are formulated by deriving key elements of the irrigation process 

such as crop water needs and soil water content balance, and the relationship between the processes. 
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Conceptual models can be used to estimate crop water needs based on climate data and soil water 

balance which aids in optimizing the irrigation scheduling (Forouhar et al., 2022). Many types of 

models have been used to simulate these elements from empirical or functional (Allen et al., 1998) to 

mechanistic (Van Aelst et al., 1988). The Food and Agriculture Organization (FAO) has developed some 

empirical models that provide a more simplified mathematical model of crop physiological processes 

such as CropWat and AquaCrop (FAO, 2014, Vote et al., 2015). CropWat can be used to assess the 

irrigation methods employed by farmers. On a broader level, it can be utilized to create water 

distribution plans for various crop patterns in an irrigation system, accommodating up to 20 different 

types of crops, such as paddy and upland rice (FAO, 2014). Unlike other models, it can calculate crop 

water and irrigation requirements from crop and climate data with minimum input (Vote et al., 2015). 

The main meteorological inputs require daily, 10-day, or monthly rainfall data, and climatic data 

(sunshine hours, wind speed, humidity, maximum and minimum air temperature), and these data can 

be input directly or imported from FAO CLIMWAT 2.0 database, which provides long-term monthly 

values for more than 5000 meteorological stations globally (Sene, 2010). Crop-related coefficients 

(rooting depth, yield response factor, crop height) can be used either from a ground survey or the 

default values from a database including a wide range of crop types (Sene, 2010). Some user-supplied 

values are required including planting area, planting date, and cropping pattern (Sene, 2010). 

AquaCrop was developed to facilitate the farmers, agronomists, engineers, water managers, 

economists, and policymakers to simulate biomass and yield response to water under varying 

agricultural practices and environmental conditions (FAO, 2014, Vote et al., 2015). The application of 

AquaCrop includes the development of irrigation schedules by farmers or water managers, optimizing 

irrigation practices, and assessing the effect of weather and climate on crop production and water use 

(Vote et al., 2015). Due to the requirement of large, predefined project files, the simulation time of 

AquaCrop is comparatively longer. In the process-based models, crop water needs are estimated 

based on daily weather variables (evapotranspiration and rainfall) during the growing season, and 

annual cropping area (Forouhar et al., 2022). The reference evapotranspiration is estimated using the 

Penman-Monteith equation which is described by (Allen et al., 1998). 

𝐸𝑇𝑜 =
0.408 ∆(𝑅𝑛 − 𝐺) +𝛾

900

𝑇 +273
 𝑢2 (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1+0.34𝑢2)
       (1) 

where, 𝐸𝑇𝑜 is reference evapotranspiration, 𝑅𝑛 is net radiation at the crop surface MJm−2day−1 , G is 

soil heat flux density MJm−2day−1 , T is air temperature at 2 m height C, u2 is wind speed at 2 m height 

ms−1 , es is saturation vapour pressure kPa, ea is actual vapour pressure kPa and es − ea is saturation 

vapour pressure deficit kPa, respectively. 

Irrigation scheduling determines the timing and amount of water applied to an irrigated cropland 

during the growing season. For the irrigation distributors, forecasting irrigation schedules at a farmer’s 

field level can be critical. A case study on corn production in the Havana Lowland region, Illinois by 

Wang and Cai (2009) by incorporating the publicly available weather forecasts and climate prediction 

soil water atmosphere plant (SWAP) model for supporting irrigation scheduling. The SWAP model 

integrated with genetic algorithm (GA) optimization to schedule irrigation using different types of 

rainfall forecasts. These methods are tested using real-time soil moisture, meteorological data, and 

weather forecasts collected during a 5-year period running from 2002–2006 to conduct a 

retrospective analysis on the impacts of weather forecasts on crop yield, net irrigation profit, and 

water use. 

Cai et al. (2011) developed a simulation-optimization modelling framework for supporting irrigation 

scheduling using probabilistic rainfall forecast incorporated SWAP model (Wang and Cai, 2009). This 
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simulation-optimization framework was developed to maximize farmers benefit over an irrigation 

season by deciding on the irrigation schedule. The SWAP model simulates soil moisture, crop ET, crop 

yield as farmers make decisions day by day. Irrigation decisions are made daily in a moving-window 

fashion, where today’s irrigation decision on how much to irrigate is optimized on the basis of existing 

conditions (today) and forecasted weather conditions (future) over a maximum forecast horizon of 1 

week. The comparison of the gain in seasonal profit and water saving in three scenarios, no rainfall 

forecast, imperfect rainfall forecast (NOAA’s probabilistic values), and perfect rainfall forecast. The 

comparison showed that using short-term imperfect rainfall forecasts could lead to 2.4-8.5% seasonal 

profit gain (gross profit in terms of yield minus irrigation cost) and 22.0-26.9% water saving for the 

farmers and irrigation distributors (Cai et al., 2011). 

Tian and Martinez (2014) developed an approach to evaluate daily ET forecasts using a global 

ensemble forecast system in the Southeastern US. Irrigation scheduling was evaluated by water deficit 

forecasts, which were determined based on the agricultural reference index for drought (ARID) model 

driven by the global ensemble forecast system (GEFS)-based ETo forecasts of up to 7 days lead (Tian 

and Martinez, 2014). Their finding showed that the water deficit forecasts driven by ET forecast 

provided higher accuracy and less uncertainty than the forecast provided by climatological data (Tian 

and Martinez, 2014). The evaluation of ensemble and deterministic forecast of water deficit in five 

locations provided the root mean square error (RMSE) in range 0.63-0.91 mm and Nash-Sutcliffe 

efficiency (NSE) of 0.87-0.82 from 1 to 5 lead days, respectively. 

A data assimilation approach has been used for irrigation scheduling using SWAP model prediction 

updated with ET prediction from the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen 

et al., 1998) model by Irmak and Kamble (2009). The main objective of this work was to develop an ET 

data integration scheme to optimize the parameters of an agro-hydrology model for on-demand 

irrigation scheduling. The study was conducted on the irrigated wheat field in Sirsa Irrigation Circle, 

northwest India using climatic data, soil data, and discharge from in a time-period between November 

2001 and December 2002. SEBAL integrates radiation from visible, near-infrared, and thermal bands 

from satellite remote sensing (RS) along with the air temperature, relative humidity, wind speed, and 

solar radiation for quantifying actual ET (Irmak and Kamble, 2009). The optimized SWAP model based 

on the genetic algorithm (GA) to estimate soil water balance for irrigation scheduling showed 

improved results with higher yield and water use efficiency (Irmak and Kamble, 2009). 

Similar research was reported by Ullah and Hafeez (2011), a holistic approach of integrating remote 

sensing derived ET from the SEBAL method with forecasted meteorological data and water-use 

efficiency was used to forecast net irrigation demand in the Coleambally Irrigation Area (Ullah and 

Hafeez, 2011). To capture the spatial variability, all hydrological data of inflow and outflow were 

estimated at 22 nodes based on direction of flow and connectivity to estimate water use efficiency. 

Results of irrigation demand forecasting indicate that the net irrigation demand forecast for fields at 

the node level shows a relatively high difference across the nodes. However, net irrigation demand 

forecast for fields at the system level shows no significant difference and has good agreement with 

actual water being delivered to fields. This study only incorporated data from a single year and 

therefore training and testing over several years would be required to further substantiate the results. 

Daily water balances were simulated at the field level within an irrigation district in Southern Italy 

based on daily weather and rainfall data, crop coefficient, irrigation methods, and soil properties 

(Khadra and Lamaddalena, 2006). This study demonstrated the capacity to simulate hydrographs of 

discharge in hourly steps for a peak of 10 days that had a similar pattern to actual discharge 

hydrographs. However, the model did not account for the hydraulic and physical limitations of the 

irrigation network and seldom generated hourly discharges higher than the observed, and produced 
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lower discharges even when simulated and registered daily volumes were comparable (Khadra and 

Lamaddalena, 2006). 

Process-based models depend on soil water balance and forecast the irrigation demand by 

incorporating historical, real-time, and short-term weather forecast information at various spatial 

scales from the field to the system. The performance of these models is often influenced by the 

irrigation process, farmers’ behaviour, model structure, and uncertainties in the input parameters. 

The inefficiency of process-based models in predicting volumetric irrigation stems from the inability 

to quantify behavioural factors, such as the attitudes of farmers and system operators, which greatly 

impact management decisions. 

4.1.2.2 Data-driven models 

Data-driven models draw a relationship between the exogenous factors (mainly weather data) and 

irrigation water demand without accounting for the physical process within the system (Forouhar et 

al., 2022). Several time-series and artificial intelligence models have been implemented to predict 

short-term irrigation water demand at regional scales (Pulido-Calvo et al., 2007, Pulido-Calvo et al., 

2003). Compared with the process-based models, data-driven models require much less data to 

generate outputs (Pulido-Calvo and Gutiérrez-Estrada, 2009). These models are driven by climatic data 

(i.e. precipitation, temperature, relative humidity, wind speed, etc.) which are easily obtained from 

the publicly accessible meteorological database and weather station at the study site, making it more 

suitable for operational forecasting purposes (Pulido-Calvo and Gutiérrez-Estrada, 2009). 

Time series models: Time-series models are traditional approaches that are commonly used for 

demand forecasting. Time-series models (univariate or multivariate) are highly explainable as they are 

based on past observations and associated error terms. Exponential smoothing, autoregressive (AR), 

moving average (MA), autoregressive-moving average (ARMA), autoregressive integrated moving 

average (ARIMA), and seasonal ARIMA (SARIMA) are examples of univariate forecasting models. 

Several inputs can be integrated as independent variables such as water demand of previous days, 

climatic data of previous days (temperature, wind speed, sunshine hours, precipitation, relative 

humidity), crop data, present water demands, and cropping pattern in developing a multivariate time 

series model (Pulido-Calvo et al., 2003). Literature from the urban water demand field indicate that 

ARIMA, SARIMA, and exponential smoothing techniques have been widely used for forecasting (Chen 

and Boccelli, 2014, Ristow et al., 2021). 

Multivariate time series models have been successfully implemented to forecast short-term water 

demand in the system scale (Perera et al., 2015, Perera et al., 2016). An ARMA model with exogenous 

variables (ARMAX) model was developed to forecast short-term (5 lead days) irrigation demands 

concerning aggregated service points flows and off-take regulator flows based on five command areas 

(command area 280 km2) and four irrigation channels in the Goulburn-Murray irrigation district. The 

major inputs for this model were weather data (daily minimum and maximum temperature, daily 

mean temperature, daily solar radiation) from automatic weather stations, reference 

evapotranspiration, normalized vegetation index (NDVI), and leaf area index (LAI) (8 and 16 days 

composite products from MODIS) collected for six irrigation years. To estimate crop water demand, 

another index known as water supply deficit (WSD) was calculated using the soil water bucket model 

based on precipitation and evapotranspiration. During the evaluation period, cross-validation NSE 

across five command areas ranged between 0.98–0.78 for forecast lead times of up to five days. Whilst 

the overall performance was promising (Perera et al., 2015), the systematic bias was higher from the 

model during the period of rapid change in demand. This possibly indicates that the crop coefficient 
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should be accounted for in the model with the more accurate method. Since this research was based 

on perfect weather forecasts, uncertainties associated with the weather forecast were not evaluated.  

Further research was conducted by Perera et al. (2016) which examined the characteristics and 

incorporated the impacts of uncertainty in the measure of weather input data, model parameters, 

and real-time weather forecast. The forecast performance for the ensemble irrigation demand 

predictions were evaluated for lead times of one to five days across the four command areas plus the 

full study area. Both the average forecasts (ensemble means) and the uncertainty estimates 

(ensemble spread) performed well overall. NSEs for forecast conditions were up to 0.97 for one day 

lead time and larger command areas and remained above 0.65 for five-day lead times, except in the 

two smallest command areas. 

Machine learning-based models: Ticlavilca et al. (2013) presented a robust machine-learning 

approach to forecast the short term (two days lead) diversion demands for three irrigation canals in 

the lower Sevier River Basin in Utah (command area 280 km2). The models were developed in the form 

of a multivariate relevance vector machine (MVRVM) that is based on a Bayesian learning machine 

approach for regression. Daily flow data from 2001 to 2006 integrated with minimum and maximum 

temperature, retrieved from The National Oceanic and Atmospheric Administration (NOAA), was used 

as model input and model performance was tested on the irrigation seasons in the year 2007. The 

comparison between MVRVM and Artificial neural network (ANN) showed that both methods could 

achieve reliable results for forecasting irrigation demand. However, the MVRVM model does not 

include rainfall as the major input (since the average rainfall is relatively low in the study site) which 

could introduce uncertainties in the model transferability to the irrigation areas with high rainfall. 

A comparison study was done using two nonlinear ANN models and one linear ARIMA model to 

forecast water demand for the water supply system in Canada (Bata et al., 2020). The nonlinear model 

was developed with five years of historical outflow data with or without introducing exogenous 

variables. Results show that nonlinear (Nonlinear autoregressive ANN) models are much more 

efficient compared to the linear (ARIMA and SARIMA) models in forecasting water demand 24 hours 

and one week ahead. Nonlinear models can capture the non-linearity and linearity in the time-series, 

providing an advantage over using traditional linear models (Bata et al., 2020). 

Perea et al. (2015) developed a new methodology to optimize deep neural network structure by 

genetic algorithm (ANN-GA) to forecast short-term daily irrigation demand in the irrigation district 

level. The model has been calibrated and validated using water demand, climatic variables (average 

temperature, solar radiation and reference ET of two previous days. Water demands were aggregated 

at daily level for the years 2010, 2012, and 2013. The model has predicted 93 % of the variability of 

the observed water demand with a standard error of 12.63 %. 

While data-driven models have frequently demonstrated improvements in the predictive accuracy of 

irrigation water demand (IWD) forecasting, there are certain concerns associated with these models. 

One notable issue is the potential for overfitting, as the models capture system interactions implicitly. 

Overfitting is a common problem that was highlighted in a study by Wu et al. (2014). Another concern 

is that data-driven models tend to underperform during periods of exceptionally high or low demand, 

which would be particularly concerning for operators. As indicated by studies conducted by Perera et 

al. (2015) and Pulido-Calvo and Gutiérrez-Estrada (2009), this limitation primarily stems from the over-

generalization of these models during their development. 
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4.1.2.3 Hybrid models 

Table 2 show examples of literature where hybrid models have been developed for shorter term 

irrigation demand forecasting at field and system level. Forouhar et al. (2022) created a hybrid 

framework that combined both existing physical knowledge and data-driven modelling techniques to 

forecast irrigation water demand for up to seven days in an irrigation district located in Victoria, 

Australia. They incorporated a conceptual model that utilized observation data to understand the 

various factors influencing crop water requirements within the system. By integrating this knowledge 

with data-driven modelling, they aimed to improve the accuracy of predicting irrigation water demand 

in advance. 

In their study, Perea et al. (2021) created a system that could forecast water demand at the farm level, 

specifically looking ahead to the next seven days. This innovative method involved integrating artificial 

intelligence methods, satellite remote sensing, and freely available climate data to improve the 

accuracy of predicting irrigation water requirements in advance. However, it is worth noting that even 

though the model achieved Standard Error of Prediction (SEP) values ranging from 17% to 19%, the 

one-week estimation provided a single value without distinguishing between individual days within 

that week. 

Perea et al. (2021) applied a methodology to the Canal del Zujar Irrigation District in Spain for obtaining 

a set of ANN models optimum for water user association. The accuracy of the developed forecasting 

models ranged from 17% to 19% and representativeness was higher than 80%. In addition, they 

reported that by analysing the input variables of the forecasting model automatically identified with 

fuzzy logic, the knowledge of the irrigator’s behaviour in water use can be increased. 

 

4.1.3 Model performance metrics 

Forecast model validation indicators calculate the forecast error rate as difference between forecast 

value and actual value. Niknam et al. (2022) highlight that the most used validation indictors are the 

root mean squared error (RMSE), standard error of prediction (SEP), coefficient of determination (R2) 

mean absolute percentage error (MAPE), mean absolute error (MAE) and Nash-Sutcliffe efficiency 

(NSE) indices.  

𝑅𝑀𝑆𝐸 =  ∑
(𝑃𝑖 − 𝑂𝑖)

𝑛
         (2) 

𝑁𝑆𝐸 =  1 −  
∑(𝑃𝑖 − 𝑂𝑖)

2

∑(𝑂𝑖 − 𝑂𝑖̅̅ ̅)
2         (3) 

𝑀𝐴𝑃𝐸 =  
∑

𝐴𝑏𝑠(𝑂𝑖 − 𝑃𝑖)

𝑂𝑖
 × 100

𝑁
        (4) 

𝑀𝐴𝐸 =  
∑ 𝐴𝑏𝑠(𝑃𝑖 − 𝑂𝑖)𝑁

𝑖=1

𝑁
         (5) 

𝑆𝐸𝑃 =  
100

𝑂𝑣̅̅̅̅
× 𝑅𝑀𝑆𝐸         (6) 

𝑃𝑖= forecast or predicted value; 𝑂𝑖  = Observed or actual value, N= total number of samples; 𝑂𝑣
̅̅ ̅ = 

average of observed water demand in validation set (L s-1) (Perea et al., 2015). RMSE is suitable to 

compare errors using the same dataset. MAPE is considered to give the error in percentage or 

proportion, lower the MAPE higher is the model performance. MAE and RMSE give similar overview 

only MAE provide the error in absolute value. NSE represents the gain of using the model versus using 
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the mean, NSE = 1 represents perfect fit and NSE = 0 represents model has a similar performance as 

the mean of the historical time series (Niknam et al., 2022). 

 

4.2 Research design and methodology 

With the focus problem being to assess the potential role of using demand forecasts to inform river 

orders, the process is represented as a model learning loop in Figure 7. Multiple models were 

developed with their evaluation focusing on performance at critical times for MI and CICL (Table 3). 

The critical times for both irrigation districts are when there is an elevated risk of underordering. Initial 

activities focused on model development and testing using historical data. As the modelling matured, 

data from the 2023-2024 season was used to test the models. Regular project meetings between 

project team members and CICL and MI operations staff were held to evaluate the demand forecasting 

algorithms and the evaluation framework. Further development of either the algorithms or the 

framework was prioritized based on their ability to meet the operational needs of the industry 

partners. Through this process, the team explored the potential value and challenges to adoption, 

operationalisation and ongoing adaptation and development of the algorithms by the project industry 

partners. For MI, an output of this process was the development of a software application for 

reporting demand forecasts for the Main Canal. 

 

Figure 7. Model learning loop for the development of demand forecasting algorithms and the evaluation framework 
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Table 2. Examples of hybrid models and their use for short-term irrigation demand forecasting at field and system level. 
 

Title Temporal Spatial scale Data Methods Variables Accuracy 

A hybrid framework for short term 
irrigation demand forecasting 
(Forouhar et al., 2022) 

Daily (7 lead 
days) 

Red cliffs 
irrigation 
district, Australia 

2012-2020 Hybrid model (Conceptual 
method for crop water need 
estimation and data driven 
model (ANN)) 

Daily rainfall, minimum and maximum 
temperature, relative humidity, bright 
sunshine hours, wind speed, sea level 
pressure, daily reference ET (calculated 
from air temperature, humidity, wind 
speed, radiation), cropping data, daily 
climate variables, seven lags of daily 
pumped volume 

RMSE = 22-
25 

 NSE = 0.92-0.90 
from 1 to 7 lead 
days 

Demand Forecasting for Irrigation 
Water Distribution Systems (Pulido-
Calvo et al., 2003) 

Daily System scale 
(Fuenta Palmera 
irrigation 
district, Spain)  

 1988-1991 CNN and ARIMA  Water demand of 5 previous days, 
climatic data of previous days (maximum 
temperature, minimum temperature, 
average temperature, precipitation, 
relative humidity, wind speed, and 
sunshine duration), crop data surfaces 
and crop coefficients 

ARIMA (R2 = 
0.973, SEP = 
85.53) 

CNN (R2 = 0.90, 
SEP = 34.11 %) 

Improved irrigation water demand 
forecasting using a soft-computing 
hybrid model (Pulido-Calvo and 
Gutiérrez-Estrada, 2009) 

Daily (1 lead 
day) 

System scale 
(Fuenta Palmera 
irrigation 
district, Spain)  

1988-1991 CNN models (Extended-Delta-
Bar-Delta algorithm), ARIMA 
model, CNN and Fuzzy logic 
hybrid models 

Daily irrigation demand data (mm day-1), 
crop data (crop coefficient and growth 
stage), weather data (rainfall, mean 
temperature and daily 
evapotranspiration) 

Correlation 
coefficient 
(R); CNN= 
0.88-0.91; 
ARIMA = 
0.93; hybrid 
model = 
0.93-0.94 

SEP of CNN= 
25.5-29.67 %; 
ARIMA = 26.81%; 
hybrid model = 
20.27-22.65 % 
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Table 1 continued 

Title Temporal Spatial scale Data Methods Variables Accuracy 

Deep learning with long short-term 
memory neural networks combining 
wavelet transform and principal 
component analysis for daily urban 
water demand forecasting (Du et al., 
2021) 

Daily 
 

Waters supply 
network in 
Suzhau, China  

2016-2020  Hybrid discrete wavelet 
transform (DWT)-principal 
component analysis (PCA)-
long short-term memory 
(LSTM) method 

Min-max temperature, weather, calendar 
information and holidays 

R =0.9803 MAPE =0.0183 

Short-term water demand forecasting 
using hybrid supervised and 
unsupervised machine learning mode 
(Bata et al., 2020) 

Hourly and 
daily (7 lead 
days) 

Water utility 
from 
Southwestern 
Ontario, Canada 

4 months 
(Aug-Nov) 

Hybrid regression tree (RT) 
and Self -Organizing Maps 
(SOM) along with seasonal 
autoregressive integrated 
moving average (SARIMA) 
model 

Outflow previous day same hour, outflow 
previous week same hour, outflow 
average previous 24 h, month of the year, 
hour of the day, day of the month 

NRMSE: 
5.18% (1hr), 
6.24% (8hr), 
6.78% 
(24hr), 
8.62% 
(7days) 

MAPE: 0.0484 
(1hr), 0.0582 
(8hr), 0.6120 
(24hr) 
0.0680(7days) 

Irrigation Demand Forecasting Using 
Artificial Neuro-Genetic Networks 
(Perea et al., 2015) 

Daily (1 lead 
day) 

Bembézar M.D. 
Irrigation District 
(BMD), Spain 

2010, 2012, 
2013  

ANN combined with Genetic 
algorithm (GA) 

Water demand in the previous day, water 
demand in the two previous days, average 
temperature, solar radiation, reference ET 

R2 = 0.90-
0.93 

SEP = 12.72-
13.48 % 

Water and energy demand 
forecasting in large-scale water 
distribution networks for irrigation 
using open data and machine 
learning algorithms (Perea et al., 
2021) 

Daily (7 lead 
days) 

The Canal del 
Zujar Irrigation 
District (CZID) 

2015, 2016, 
2017 and 
2018 

ANN combined with Genetic 
algorithm (GA) 

Aggregated daily water demand, daily: 
temperature (max, min, average), relative 
humidity, solar radiation, wind speed, 
precipitation, effective rainfall, net solar 
radiation, reference evapotranspiration, 
mean NDVI at farm level 

R2 = 0.66-
0.81 

SEP = 17.1-18.2 
% 
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Within the literature, there was limited evidence that evaluation approaches considered the context 

of potential users of demand forecasts or crop models. Supporting this, engagement with industry 

partners through project team meetings and the conceptual modelling workshop held in May 2023 in 

Griffith indicated that the metrics that are typically reported in the literature are not always fit-for-

purpose in practice. Recognising this, the evaluation framework developed and employed in this 

project identified basic (which are most applied in the literature), risk (or control) informed and 

diagnostic metrics (Table 4). 

 

Table 3. Overview of models developed by the project team. 

Irrigation district zone Model Training period Testing period Scenarios 

MIA – Main canal UoM Hybrid model 
(Section 4.4.3) 

2018-2022 2023-2024 • Actual forecast 

• Perfect knowledge of forecast 
rainfall and temperature 

• Perfect knowledge of all 
model features 

MI data-driven model 
(Section 4.5) 

 2023-2024  

CICL UoM Hybrid model 
(Section 4.4.4) 

2019-2022 2023-2024 • Perfect forecast 

• No forecast 

 

Table 4. Examples of metrics that are relevant to evaluation of demand forecasting (note that not all metrics used in the project are 
suitable for public release)   

Basic metrics Risk (or control) informed Diagnostic 

Under-ordering focused  

• Absolute error timeseries  

• Relative error timeseries  

• Total absolute bias 

• Relative bias  

• Graph of cumulative error 
over time  

• Cumulative distribution 
function  

  
Other metrics  

• RMSE (over and 
underestimates have equal 
weight)  

• NSE (relative to mean) 

• Error as percentage of total 
surge capacity (within district)  

• Error as percentage of available 
surge capacity 

• Cumulative error as percentage 
of total river surge capacity   

• Cumulative (spatial and 
temporal) error at offtakes and 
zones  

• Total 3-day running error  

• Evaluation of probabilistic 
forecasts (reliability, sharpness)  

• Performance on specific sub-periods  

• Missed rain events  

• Other high customer order-take 
mismatch periods  

• Key crop development periods  

• During planting window  

• Heatwave/high evaporative demand 
periods  

• Performance as a function of flow 
(expect higher error with higher flow)  

• Highest 10% demand days 

 

In the context of continuous improvement, the intention is that end-users of forecast are provided 

with the information and tools needed to be able to form their own assessment of the performance 

of the forecast in terms meaningful to them, to be able to identify periods of time when the forecast 

may perform poorly, and report failures of the model to inform further model development. The 

assessment framework developed in the project was intended to fit within a regular performance 

review process that considered (1) issues faced in forecasting and ordering since the previous review 
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meeting, (2) evaluation of operational, staging and experimental forecasts and (3) discussion of future 

changes such as the identification of test cases and hypotheses for model improvement or possible 

changes to performance metrics. The outcomes of this process are documented in Section 4.6. 

 

4.3 Case study data 

4.3.1 MI Area of Operations 

There are two key offtakes, namely Narrandera (main canal) and Sturt, which are the key decision 

points for demand forecasting in MI. The Sturt subsystem is mainly broadacre with a smaller (although 

still considerable) demand for water than the Main Canal; the channel capacity limits how MI can 

operate this part of the system. During periods of very low demand, demand can be met purely 

through the main channel system (the Narrandera offtake). 

Weather variables were obtained from Griffith Airport weather station by MI for the period between 

January 2010 and August 2023. These variables include daily minimum and maximum temperature 

(C), daily relative humidity (%), solar radiation (MJ/m2), wind speed (m/s), and vapor pressure (kPa). 

MI provided the long-term factors such as the cropping area and crop types for the main and Sturt 

channels.  

 

4.3.2 CICL Area of Operations 

The CICL main channel offtake, upstream of Gogeldrie weir, can be used to fill the Tombullen storage 

owned and operated by WaterNSW as well as the CICL system of channels, the off-stream storage, 

and delivering water outside the system via the Coleambally Catchment Drain (CCD) and DC800. Water 

is mainly regulated by the total channel control (TCCTM 10) system in the CICL irrigation district.  

Weather variables were obtained from the Bureau of Meteorology (BoM) Coleambally Irrigation 

station (74249) for the period between January 2010 and August 2023. These variables include daily 

minimum and maximum temperature (C), daily relative humidity (%), solar radiation (MJ/m2), wind 

speed (m/s), and vapor pressure (kPa).  

CICL provided the long-term factors such as cropping area and crop types as well as thedaily net 

diversion volume (ML) diverted through CICL main offtake (minus WaterNSW deliveries for Tombullen, 

CCD and DC800).  

4.3.3 Role of Uncertainty 

Uncertainty within river ordering is currently approached primarily from the point of view of 

maturity/utility of information products and their relatability to the tacit knowledge of operators. 

Other framings of uncertainty (Guillaume et al., 2017) take a secondary role. Operators draw on 

multiple information sources ("triangulation") and would not rely solely on a single demand forecast 

but do not explicitly quantify uncertainty. Operators show interest in historical performance of 

algorithmic forecasts but do not yet use probabilistic information. Operators use different 

assumptions in different circumstances, which potentially lends itself to switching between different 

forecast models in future. 

 
10 https://rubiconwater.com/irrigation-district-solutions/, Accessed 13 January 2025 

https://rubiconwater.com/irrigation-district-solutions/
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This project deliberately adopted continuous improvement as the primary mechanism for managing 

model uncertainty. Development of a first generation of algorithmic demand forecasts and their 

adoption for river ordering builds the foundation for progressively reducing uncertainty over time, 

with new experiments in demand forecasting providing steps towards a longer-term goal. Currently, 

the forecasts presented in this chapter are deterministic. In the future, ensemble forecasts could be 

considered to consider the implications and effects of (for example) different decisions or possible 

states that can change across the season in presence of uncertainties.  

A continuous improvement approach to uncertainty is considered essential for a context in which user 

behaviour is expected to change over time and is far from fully characterised. A combination of 

conceptual and data-driven modelling allows forecasts to fit behaviour during a training period, but 

model performance is expected to both vary across different conditions and to drift over time. While 

differentiation of classes of users is possible, it is expected that fundamental limits would be reached 

due to privacy considerations and lack of predictability of human behaviour. In addition, diminishing 

returns are likely to be encountered given the effectiveness of data-driven modelling of emergent 

behaviour at the system level. Unknown unknowns form an important part of user behaviour. If those 

unknowns are present in the training data, data-driven models may be able to capture their effect at 

system level. If unknown unknowns are not present in the data, in a river ordering context they can 

still be managed as they emerge (when they become known unknowns) by being aware of the 

limitations of model and ceasing its use. For example, extreme events such as floods, long droughts, 

fire, and crop disease may cause major changes to water demand in the region that operators can 

react to if the model lacks skill. Maintaining a human in the loop is an important part of uncertainty 

management of demand forecasts for river ordering. 

Information about future weather, soil moisture, and crop water use are all incomplete and uncertain, 

with missing spatial variation and coarse approximation of behaviours. It is expected that uncertainty 

on all these factors could be gradually reduced over time through additional data collection, data 

sharing, or uncertainty quantification. Explicit uncertainty quantification, e.g., ensemble weather 

forecasts, could both feed into probabilistic demand forecasts and inform additional data collection 

to improve skill at longer lead times, using value of information and design of experiment 

methodologies. 

In general, the modelling problem is characterised by an abundance of uncertain and potentially 

inconsistent data points about a variety of possible forecasting outputs. Consistent with the tension 

between simple and complex models, there is temptation to err towards more complex mechanistic 

models of water balances and user behaviours that produce estimates of demand at the finest scale 

possible, and then to aggregate these demands to a variety of scales. However, weather does vary 

across the region, neither point-wise soil moisture data nor satellite soil moisture provide 

generalisable high-fidelity information, user-reported and remotely sensed crop data are both 

uncertain and not necessarily timely, the uncertainty aggregation behaviour of customer outlet data 

is not known, and the state of user behaviour modelling involves hypotheses of heuristic rules in use 

with limited historical evidence. While increasing model complexity is likely to be worthwhile, this 

project has elected to tackle uncertainty by starting simple, building on existing lumped regional 

modelling techniques. Data at the main offtakes is regularly audited for regulatory purposes, and other 

necessary data is publicly available with potential to use more local and/or more accurate data sources 

when available. 

Each model is considered a digital asset in its own right. As with other assets, its lifecycle needs to be 

managed, including maintenance and replacement. Maintenance includes ongoing verification of 

whether performance is degrading, as well as gradual improvement of understanding of its domain of 
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applicability - understanding under which conditions it performs well and poorly. As with other assets, 

failure of a model’s forecast to meet defined requirements may cause cascading failures in water 

delivery processes, and therefore need to be identified quickly, and anticipated where possible. As 

understanding of limits of existing models improves, a business case is made for replacement with a 

new model that improves performance according to all defined criteria. Given the location-specific 

nature of the models in use, collaboration with research institutions can form part of the replacement 

strategy - building a critical mass of experts on the local system who provide data science services 

rather than just providing a model as a product. 

Overall, the management of uncertainty aims to draw on best practice in 1) use of forecasts in water 

operations, 2) continuous delivery of software products, e.g., as seen in “MLops” deployment of 

machine learning models. While there is extensive history of these concepts in other application areas, 

development of best practice guidelines in water delivery and integrated storage management in 

systems like the Murrumbidgee is still at its early stages and will need further development between 

One Basin CRC partners before its formalisation. 

 

4.4 Case study: UoM hybrid model application 

4.4.1 Rationale for model selection 

Three major approaches for short-term irrigation water demand forecasting have been elaborated in 

the literature (and detailed in Section 4.1).  These involve conceptual (process-based), data-driven 

(system theoretical) and hybrid modelling, respectively. Conceptual models are developed by 

modelling key elements of the irrigation process such as soil water balance or crop water needs and 

the relationships between them (Forouhar et al., 2022). Several approaches have been reported for 

simulating crop water needs based on empirical, functional, and mechanistic relationships within the 

conceptual models. Data-driven models are developed to map the relationship between the 

influential factors and irrigation demand with no detailed consideration of the internal structure of 

the physical process (Perera et al., 2015). There are also hybrid models that try to draw on the benefits 

of both the conceptual and data-driven approaches.  All these models generally aim to generate the 

daily crop water needs for irrigation water demand forecasting using climate variables and crop 

properties. 

Conceptual models aim to determine the optimal timing and quantity of irrigation water to maximize 

yield or economic benefits based on different criteria, including farmer assessment of crop water 

needs, estimating crop water needs based on historical climate data, and/or prediction of irrigation 

water requirement based on soil water data obtained from soil moisture sensor (García et al., 2018, 

Perea et al., 2021, Forouhar et al., 2022). An advantage of conceptual models is that they aim to build 

theoretical and experiential knowledge into the model structure; however, the performance of 

conceptual models is influenced by the way the various processes are represented in the model and 

the quality of input data (Cai et al., 2011, Wang and Cai, 2009, Forouhar et al., 2022). The primary 

drawback of conceptual models is that only some of the interactions between physical understanding 

of the system elements are included and thus modelled as they mainly consider the irrigation 

requirement equivalent to crop water needs (Forouhar et al., 2022). 

Data-driven models aim to identify a direct empirical relationship between inputs and outputs without 

detailed consideration of the internal structure involved in the biophysical system. An advantage of 

data-driven models over conceptual models is that they have lower data requirements. Data-driven 
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models have improved the predictive performance of water demand forecasting models (Pulido-Calvo 

and Gutiérrez-Estrada, 2009) although limitations are inevitable. Data-driven models typically learn 

patterns from training data that may not accurately represent the broader population or future data 

points, sometimes leading to overfitting and failure to perform accurately in unseen or extreme 

demand conditions.  

Hybrid models have proven to be more versatile for short-term water demand forecasting by 

combining conceptual and data-driven techniques (Pulido-Calvo and Gutiérrez-Estrada, 2009, 

Forouhar et al., 2022). The efficacy of the hybrid approach becomes apparent when compared to an 

independent approach using either conceptual or data-driven models (Forouhar et al., 2022). 

Integrating a conceptual understanding of the physical system into data-driven models has shown 

promising results in improving prediction performance. For instance, Forouhar et al. (2022) devised a 

hybrid framework that incorporated existing physical knowledge into a data-driven model by utilizing 

a conceptual model to comprehend factors influencing crop water needs through observation data. 

This integrated approach successfully forecasts short-term irrigation water demand up to 7 days 

ahead for an irrigation district in Victoria, Australia.  Perera et al. (2016) developed a multivariate time 

series model integrating both conceptual and data-driven approaches into a single structure to 

forecast irrigation water demand for a lead time of up to 5 days. In a different application, Sushanth 

et al. (2023) applied a hybrid approach to accurately forecast inflows in a reservoir-regulated basin 1-

5 days in advance, showcasing its effectiveness. Consistent results were also reported by Perea et al. 

(2023) in the middle-term water demand forecasting for irrigated areas. This hybrid approach not only 

demonstrates the potential for effective short-term water demand forecasting but also provides 

helpful insights into daily operational decisions for water suppliers as well as agricultural businesses 

(Perera et al., 2016).  This section of the report develops (Section 4.4.2) and evaluates a hybrid 

modelling approach for MI (Section 4.4.3) and CICL (Section 4.4.4) case study applications.11 

 

4.4.2 Model development 

The structure of the hybrid model is depicted in Figure 8. In the conceptual segment of the model, 

daily crop water needs are computed based on weather, crop type and crop area variables. The soil 

water balance model was introduced in the conceptual part of the module to derive the crop irrigation 

requirement (CIR), considering the effect of rainfall on irrigation water demand. The data-driven 

model then incorporates 7 days of lagged and leading weather variables, along with the CIR and 

reference evapotranspiration (ETo) obtained from the conceptual module, serving as potential 

features. Recognizing the likelihood of relatively higher errors in the conceptual model, we assume 

that these errors can be further minimized in the data-driven component of the model. 

 
11 Publicly shared code available as: One Basin CRC (2024). irrigation-district-demand-forecasting: Public release (v0.1.0). Zenodo. 
https://doi.org/10.5281/zenodo.14428758  

https://doi.org/10.5281/zenodo.14428758
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Figure 8. Overall framework of the hybrid model. 

 

4.4.2.1 Conceptual module 

The conceptual model is mainly based on weather variables (minimum temperature, maximum 

temperature, wind, vapour pressure, humidity and rainfall) and crop data (cropping area and crop 

type) which are used to calculate daily crop irrigation requirements (CIR). Firstly, daily reference 

evapotranspiration is estimated using the Penman-Monteith equation described by Allen et al. (1998). 

𝐸𝑇𝑜 =
0.408 ∆(𝑅𝑛 − 𝐺)+𝛾

900

𝑇 +273
 𝑢2 (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1+0.34𝑢2)
       (1) 

where, 𝐸𝑇𝑜 is reference evapotranspiration, 𝑅𝑛 is net radiation at the crop surface MJm−2day−1, G is 

soil heat flux density MJm−2day−1, T is air temperature at 2 m height C, u2 is wind speed at 2 m height 

ms−1, es is saturation vapour pressure kPa, ea is actual vapour pressure kPa and es − ea is saturation 

vapour pressure deficit kPa, respectively. 

Crop evapotranspiration (ETc) under standard conditions is defined as the evapotranspiration from 

disease-free, well-fertilized crops grown in large fields under optimum soil water conditions and 

achieving full production under the given climatic conditions (Allen et al., 1998). The crop coefficient, 

Kc, is the ratio of the crop ETc to the reference ETo, and it represents an integration of the effects of 

four primary characteristics that distinguish the crop from reference grass (Allen et al., 1998). Kc is 

specific to a given crop and is usually determined experimentally. kc values represent the integrated 

effects of changes in leaf area, plant height, crop characteristics, irrigation method, rate of crop 

development, crop planting date, degree of canopy cover, canopy resistance, soil and climate 

conditions, and management practices (Pokorny, 2019). Each crop will have a set of specific crop 

coefficients and will predict different water use for different crops for different growth stages.  

Using the crop coefficient approach is under standard conditions ETc given by (2).  

𝐸𝑇𝑐 = 𝐾𝑐  × 𝐸𝑇𝑜         (2) 

kc values for the initial stage, mid-season and harvest were obtained from the literatures (Humphreys 

et al., 1994, Shuttleworth and Wallace, 2009, Meyer et al., 1999, MDBA, 2018, Lewis and Randall, 

2017, North et al., 2008). In the FAO56 method used here, Kc values for the development stage and 

late season (see  
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Figure 9) are interpolated using equation (3).  

𝐾𝑐 = 𝐾𝑐 𝑝𝑟𝑒𝑣 + [
𝑖−∑ 𝐿𝑝𝑟𝑒𝑣

𝐿𝑠𝑡𝑎𝑔𝑒
] × (𝐾𝑐 𝑛𝑒𝑥𝑡 −  𝐾𝑐 𝑝𝑟𝑒𝑣)      (3) 

where, i: day number within the growing season, 

 Kc I : crop coefficient on day i, 

 Lstage : length of the stage under consideration [days], 

 ∑ 𝐿𝑝𝑟𝑒𝑣: sum of length of all previous stages [days] 

In addition, a representation of soil water conditions was introduced to incorporate the effect of 

rainfall in the crop water needs estimation (Figure 10). We recognise that along with heavy rainfall, 

other factors impacting irrigation demands for the following days could include soil water recharge, 

surface runoff and deep percolation.  

 

 

Figure 9. Schematic representation of increase and decrease in crop coefficient based on different plan development stages (Imrak, 2008). 
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Figure 10. Schematic diagram for a simple soil water balance model.  

 

Crop water needs is the amount of water required to compensate for the evapotranspiration loss from 

the cropped field. Crop water needs and ETc are identical, as one represents the amount of water 

needed, and the other refers to the amount of water lost. 

Based on the soil water balance model, the crop irrigation requirement (CIR) can be represented as; 

𝐶𝐼𝑅𝑖 = 𝑆𝑖−1 + 𝑅𝑎𝑖𝑛𝑖 − 𝐸𝑇𝑐        (4) 

Where, i: day counter, Area: cropping area, Si: Soil moisture content; ETc: crop evapotranspiration.  

A soil saturation threshold (Smax) has been defined to simulate runoff generations in reaction to 

rainfall. The soil saturation threshold is the maximum amount of water that the soil can hold. Beyond 

this point, any additional water will either runoff or move downwards through the soil profile, 

potentially contributing to the factors such as groundwater recharge. Likewise, we assume that the 

fields are always maintained at the half capacity of the total soil saturation threshold, giving us the 

irrigation requirement for each day concerning the rain, and ETc. In this case, we have considered the 

soil saturation threshold at 100 mm. This assumption, whilst somewhat crude, reflects that at an 

irrigation district level, there is a spectrum from some fields being fully irrigated through to others 

being dry and needs to be irrigated immediately. After a rain event, the soil capacity can be filled up 

to full and irrigation is not necessary until the moisture is drawn down to half level. The CIR for each 

crop type is then aggregated for the whole area to compare with the daily demand values.  

Table 5 lists the major crop types grown between the 2018-2023 period for MI and CICL, respectively 

which were considered in the model; some crop types in either irrigation area, which collectively 

Smax =100 mm

Half capacity
(0.5 Smax)

Rain Irrigation ETc
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account for less than 2 percent of the total irrigated area, were excluded. The area of each crop used 

in the model was provided by CICL and MI staff who also checked the suitability of the planting and 

harvest dates initially derived from the available literature.  

Table 5. Description of major crop types in Murrumbidgee irrigation district. 

District Plantation area (ha) range 

MI Citrus, Cotton, Nuts, Rice, Summer cereals, Summer oilseeds, Summer pasture, 

Vegetables, Vines, Winter oilseed, Winter cereals, Winter pasture 

CICL Rice, Cotton, Winter Wheat, Almonds, Corn, Annual Pasture, Almonds, Corn, Annual 

Pasture, Barley, Oats, Oilseeds, Sorghum, Soybeans 

4.4.2.2 Data-driven module 

After estimating crop irrigation requirements (CIR) and reference evapotranspiration (ET0), the input 

features for the data-driven module were selected from the dataset. This included seven lags of all 

prospective input variables: Tmin, Tmax, solar radiation, rain, ET0, CIR and actual demand. 

Additionally, forecasts of the weather variables for the next seven days were incorporated as inputs. 

As shown in Figure 7, seven models were trained using the same set of X variables and varying the 

target Y variables from lead day 1 to 7. The perfect weather forecast assumption was considered for 

comparison, utilizing observation values of the weather variables. The model was developed based on 

three scenarios: assuming perfect forecast, no forecast and actual forecast.  

The prediction model for actual water demand utilized Extreme Gradient Boosting (XGBoost), an 

algorithm based on decision trees that employs gradient descent to generate new trees. XGBoost is 

known for its effectiveness in classification and regression tasks. For the regression task, the XGBoost 

model sequentially generated new trees and fit residuals from the previous model, allowing for 

parallel execution based on boosted trees and efficient handling of complex data (Shan et al., 2023). 

The XGBoost model was trained using the feature set from year 2018 to 2022. Hyperparameter 

optimization was performed using GridSearchCV from the scikit-learn package, involving cross-

validation techniques to select the optimum hyperparameters. A leave-one-year-out cross-validation 

technique was applied. The model's performance was evaluated during the independent testing 

period in the season 2023-2024. Using the 7 pre-trained models, the forecast values are generated at 

daily time steps.  

 

4.4.3 Application to the MI area of operations 

The conceptual part of the model involved calculating both the reference evapotranspiration (ETo) 

and daily crop water needs. Figure 11 displays the annual trend of daily ET0 from 2018 to 2024, while   
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Table 6 provides the monthly average, minimum, and maximum ET0 values. Figure 11 shows that 

average ET0 values are lower during winter months, specifically from April to August, and gradually 

increase from September to March each year. Figure 12 shows the residuals on the y-axis representing 

the difference between the actual irrigation demand and the CIR over time, from 2018 to 2024. 

Positive values indicate that the demand was higher than the requirement. The residuals during 2018-

2019 show significant variability, with frequent swings between positive and negative values. The large 

variability suggests that there may have been inconsistencies possibly due to erratic weather patterns, 

changes in irrigation practices, or errors in estimating crop areas. As the plot moves into 2019 and 

2020, the residuals tend to be more negative, with several large dips below zero, although the overall 

variability is somewhat reduced compared to 2018. In late 2020 and 2021, the residuals show 

significant positive spikes reaching values as high as 4000 ML. The positive spikes could indicate a 

period of over-irrigation, possibly due to conservative irrigation practices to avoid under-watering 

during critical growth periods or adjustments made in response to extreme weather. In 2022-2023, 

the plot shows a decrease in the overall variability of residuals, with less frequent extreme spikes, 

though both positive and negative residuals indicate there is still room for improvement in matching 

irrigation demand with crop needs. Towards the end of the time series, particularly in 2023 and 2024, 

the residuals stabilise, with fewer extreme fluctuations and more residuals closer to zero. 

 

Figure 11. Annual trend of reference evapotranspiration in Murrumbidgee Irrigation district.  

The concept of CIR can be complemented by irrigation water requirements (IWR). IWR is a net depth of water that must be applied to a 

crop to satisfy CIR fully. It is the fraction of CIR not satisfied by rainfall, soil water storage and groundwater contribution. In the current 

approach, CIR acts as an IWR without considering the effect of groundwater. The availability of groundwater can be crucial in sustaining 

agricultural activities, as farmers often rely on wells to extract groundwater for irrigation. The unaccountability of groundwater storage 

the model could also be the reason for having higher CIR than actual demand. The scatter plot shows the correlation between actual 

demand and CIR which attained a coefficient of determination (R2) of 0.72 (Figure 13). 
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Table 6. Monthly statistics of ETo calculated using FAO 56. 

Months Eto 

Average Max Min 

Jan 7.1 11.5 1.9 

Feb 6.3 9.9 2.8 

Mar 4.6 8.4 1.3 

Apr 2.9 7.2 0.9 

May 1.6 3.9 0.5 

Jun 1.1 2.7 0.5 

Jul 1.2 3.5 0.4 

Aug 1.7 4.7 0.6 

Sep 3.0 6.3 1.2 

Oct 4.2 8.8 1.8 

Nov 5.4 10.4 1.1 

Dec 6.8 12.0 3.7 

 

 

Figure 12. A residual plot showing the difference between the actual demand of MI and crop irrigation requirements. 
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Figure 13. Scatter plot showing actual demand versus predicted crop irrigation requirements. 

 

4.4.3.1 Extreme gradient boosting model 

Table 7 gives the comparison of the XG-Boost model performance in three scenarios. Figure 14 shows 

the RMSE for three models across a 7-day lead time. The perfect forecast of temperature and rain, 

means that these variables are assumed to be known accurately based on observed data. The RMSE 

for this scenario starts around 409 ML on lead day 1 and gradually increases to about 677 ML by day 

7. The blue dashed line represents the model using actual temperature and rain forecast from BoM, 

which introduces real-world forecasting uncertainties. The RMSE for this case is higher across all lead 

days compared to the perfect forecast model, starting at 417 ML on day 1 and rising to 728 ML by day 

7. The third scenario is assuming the model has perfect knowledge of all input variables for the next 7 

days, i.e. the perfect forecast for all feature inputs. It shows the lowest RMSE value on lead day 1 

starting at 380 ML and increasing more slowly to 637 ML by lead day 7.  

All three models show an increase in RMSE as the lead time increases from 1 to 7 days. This trend is 

expected because the uncertainty in forecasting generally grows as the lead time increases. The actual 

forecast model has the highest RMSE at all the lead times, highlighting the impact of real-world 

forecast errors on irrigation demand prediction. The gap between this model and the perfect forecast 

models increases over time, especially after lead day 3. The result shows the model performs better 

with the perfect knowledge of all inputs as it incorporates a comprehensive set of features, minimising 

errors even over longer lead times. The significant difference in RMSE between the actual forecast 

and the perfect forecast models emphasises the importance of accurate input data. 

The graph in Figure 15 shows the absolute forecast error for the 7th lead day and rainfall data over a 

period spanning from January 1, 2023, to June 1, 2024. The forecast error fluctuates significantly over 

time, with periods of low error interspersed with spikes reaching up to approximately 2000 ML. The 

error tends to be higher during certain periods, indicating the model struggles more with accuracy 

during these times. In early January 2023, several heavy rainfall events coincide with high forecast 

errors, exceeding 1500 ML. Similar patterns are observed in mid-July 2023 and January 2021, where 

intense rainfall events are followed by large forecast errors. This suggests that the model has difficulty 

accurately predicting the demand when there is heavy rainfall, possibly because the actual water 
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needs of crops are significantly influenced by these extreme events and the model may not account 

fully for these variations. During period of lower rainfall, the forecast error generally decreases, as 

seen in April 2023, November 2023 and May 2023. The model’s performance is better under stable 

and less extreme weather conditions. The error seems to follow a seasonal pattern, with higher errors 

during wetter months and lower errors during drier months. This could reflect the model’s 

performance across different season, where it struggles more in wet seasons due to the complexity 

introduced by rainfall. Figure 16 shows the correlation plot between actual demand and predicted 

demand for the 7th lead day. 

Table 7. Results from the XGBoost Murrumbidgee model with perfect and actual forecast weather inputs. 

Lead  Perfect temp and rain forecast Perfect forecast for all 
feature inputs 

Actual temp and rain forecasts 

RMSE (ML) RMSE (ML) RMSE (ML) NSE MSSS 

1 409.8 380.6 417.6 0.902 0.0334 

2 472.3 431.3 483.1 0.874 0.0570 

3 524.3 504.5 559.0 0.840 0.0553 

4 559.4 502.5 596.5 0.798 0.0596 

5 589.6 515.4 649.5 0.776 0.098 

6 585.8 531.3 682.2 0.757 0.0996 

7 677.6 637.4 728.6 0.727 0.1419 

 

 

Figure 14. Comparison of RMSE attained for the lead days using two scenarios for the model development. 
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Figure 15. Line plot showing the absolute error for the 7th lead day and daily rain 2023-2024 (MI). 

 

 

Figure 16. Scatter plot showing actual versus predicted demand on 7th lead day using actual forecast. 

 

Figure 17 explains the important variables for generating the forecast values which include the 

demand values of previous days (actual_demand_m1, actual_demand_m2, actual_demand_m3, 
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actual_demand_m6 and actual_demand_m7). Other influencing variables include radiation and rain 

of the previous day and the forecast maximum air temperature and precipitation.  

 

Figure 17. SHAP score from XGBoost model for 7th lead day using actual forecast information (p: lead days and m: lag days). 

 

4.4.4 Application to the CICL area of operations 

Figure 18 shows that the average ET0 values exhibit a lower trend during winter months, specifically 

from April to August, and gradually increase from September to March each year. Figure 19 shows the 

residual plot showing the difference between actual irrigation water demand and crop irrigation 

requirements over time, spanning from 2019 to 2024. In the starting year 2019 to 2020, the residuals 

are relatively stable with a smaller fluctuation around zero. Later in 2021, there was a noticeable 

increase in the amplitude of the residuals, with peaks reaching up to around 2000 ML and troughs 

down to -1000 ML. The residuals continue to show high variability, similar to 2021 in 2022, though 

with slightly less extreme values. The peaks are lower than in 2021, generally staying below 1500 ML. 

There are several notable spikes, particularly negative ones, with residuals dropping to nearly 1500 

ML from 2023 to 2024. This indicates periods where the actual demand was significantly lower than 

crop irrigation requirements. Over the five years, the residuals show increasing variability, particularly 

from 2021 onwards. These increased fluctuations could be attributed to several factors, including 

changes in weather patterns, irrigation practices, crop types, or forecasting errors. Figure 20 shows 

the correlation between net diversion and CIR which provided a R2 of 0.54.  
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Figure 18. Annual trend of reference evapotranspiration in Coleambally Irrigation district. 

 

 

Figure 19. A residual plot showing the difference between the actual demand of CICL and crop irrigation requirements. 
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Figure 20. Scatter plot showing actual demand and crop irrigation requirements for CICL. 

Extreme gradient boosting model: 

 

Figure 21. Inputs to the scenarios 

Results in  

Table 8 show the forecast RMSE values range between 310 and 445 ML using perfect forecast 

scenarios. In the ideal case for CICL, where no weather forecast information is used in the model, 

RMSE lies between 340 and 532 ML. Figure 22 shows the RMSE of irrigation demand forecasts over a 

7-day lead time using two scenarios. The perfect forecast model consistently outperforms the no-

weather forecast model across all lead days, indicating that accurate forecast information significantly 

improved the model’s predictive accuracy. No weather forecast model is fully relied on historical data 

or static input, meaning it does not account for the dynamic changes in key variables that influences 

more sharply, reaching nearly 500 ML by day 7. 

Figure 23 relationship between the forecast error (in ML) for a 7-day lead time and the observed 

rainfall (in mm) over the period from August 2023 to March 2024. The absolute errors fluctuate 

significantly over time, with peaks reaching as high as 1800 ML. The graph shows a series of high 
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forecast errors, particularly in early to mid-August 2023. Rainfall during this time is sporadic but 

intense, leading to significant forecast errors. In the summer months, from October to mid-November, 

the error is lower with relatively less rainfall events. In December and January the spikes get high 

followed by rain around 20 mm. During the dry period in late January to March, the forecast errors 

are significantly lower, this might be because the model’s inputs (such as past demand, temperature 

and evapotranspiration) remains stable, reducing the likelihood of large deviations between the 

forecasted and actual irrigation demand.  

Figure 24 explains the important variables for generating the forecast values which include the 

demand values of previous days (actual_demand_m1, actual_demand_m2, actual_demand_m6 and 

actual_demand_m7). Other influencing variables include radiation and evapotranspiration. The 

model’s reliance on the past 7 days demand values could create a lag in its response to changing 

conditions. This lag could explain why the forecast errors are particularly large during periods of 

significant deviation from normal conditions, such as during heavy rainfall. 

 
Table 8. Results from the XGBoost Coleambally model with perfect and no forecast scenarios 

 

Lead  Perfect weather forecast No weather forecast 

 RMSE (ML) RMSE (ML) NSE MSSS 

1 313.1 340.6 0.780 0.242 

2 359.8 412.9 0.668 0.359 

3 396.7 455.6 0.601 0.416 

4 424.8 485.6 0.504 0.489 

5 434.3 508.1 0.480 0.513 

6 453.0 531.8 0.456 0.552 

7 442.1 532.7 0.461 0.556 
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Figure 22. Comparison of RMSE attained for the lead days using two scenarios for the model development. 

 

 

Figure 23. Line plot showing the absolute error for the 7th lead day and daily rain 2023-2034 (CICL). 

 

 

Figure 24. SHAP score from XGBoost model for 7th lead day using actual forecast information (p: lead days and m: lag days). 

 

In both case studies, MI and CICL, the results suggest that the model’s forecast errors increase 

significantly during periods of heavy rainfall. This indicates that extreme weather events, particularly 

rainfall, introduce significant uncertainty into the model’s predictions of irrigation demand. The model 
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may not fully capture the complex relationship between rainfall and crop water needs, leading to 

larger errors during these times. Conversely, during the dry periods, the forecast errors are generally 

lower, suggesting that the model performs better under more predictable, stable weather conditions. 

Understanding these patterns can help in managing irrigation practices better by recognizing when 

forecast errors are likely to be high. During periods of extreme events, more caution may be needed 

in relying on the forecast for irrigation decisions. 

 

4.5 Case study: MI data-driven model 

4.5.1 Methodology 

The Operations team at MI is responsible for the river orders. Weather, storage volume, channel works 

are all factors that go into their decision-making process. Often excess water is ordered from the river 

so that the water can be diverted off the main canal to meet system operational needs (e.g. surge 

refills). Non-compliance is also a big issue (farmers taking water without ordering it). Using data for 

the main offtake, it is not realistic to forecast diversions and non-compliance. MI’s demand forecast 

model will look to forecast for the residual, i.e. water demand less the diversions. It will then be up to 

the operators to adjust for the diversions and non-compliance. 

Parameters used in MI’s model (so far) are: 

• Weather forecast (temperature & rain) 

• Observed Weather (temperature & rain) 

• Lagged actual daily demand (less daily diversions)  

The Skforecast library is utilised to build and train the model. The model is built using the 

ForecasterAutoregMultivariate class, since it is suitable for dependent multi-series forecasting. In 

dependent multi-series forecasting (multivariate time series), all series are modelled together in a 

single model, considering that each time series depends not only on its past values but also on the 

past values of the other series. The forecaster is expected not only to learn the information of each 

series separately but also to relate them. 

Since as many training matrices are created as there are series in the dataset, it must be decided on 

which level (in this case – demand) the forecasting will be performed. To predict the next n steps (in 

this case 7) a model is trained for each step to be predicted. In this case, the level is the water demand. 

Backtesting is carried out using the backtesting_forecaster_multiseries class. In time series 

forecasting, the process of backtesting consists of evaluating the performance of a predictive model 

by applying it retrospectively to historical data. Therefore, it is a special type of cross-validation 

applied to the previous period(s). The purpose of backtesting is to evaluate the accuracy and 

effectiveness of a model and identify any potential issues or areas of improvement. By testing the 

model on historical data, one can assess how well it performs on data that it has not seen before. This 

is an important step in the modeling process, as it helps to ensure that the model is robust and reliable. 

The backtesting strategy used is Backtesting with refit and increasing training size (fixed origin). 

Instead of randomizing the data, this backtesting sequentially increases the size of the training set 

while maintaining the temporal order of the data. By doing this, the model can be tested on 

progressively larger amounts of historical data, providing a more accurate assessment of its predictive 

capabilities. 
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4.5.2 Results 

The backtest error for the period shown in Figure 25 is 353.99 ML/d; this statistic is the mean absolute 

error, calculated as the average of the absolute difference between the predicted and actual demand 

values ∑
(𝑦�̇� − 𝑦𝑖)

𝑁
𝑁
𝑖=0 . It is calculated only for the main canal (focus of this forecasting exercise so far). A 

gradient boosting algorithm, XGBoost, was used to carry out the predictive modelling task. 

 

Figure 25. Plot of residual (Actual vs Predicted Demand)  

 

The metrics used to assess model performance are shown in Table 9. This brings us to the results 

section. The negative bias suggests that the model is underestimating the demand. 

The RMSE suggests that the typical difference between the model’s predictions and the actual demand 

is 498.05 ML/d. Given that the demand ranges from 0 to 5000 ML/d, the average error rate sits at 

around 9.9%.  Max_Error is the maximum difference between a forecasted demand and actual 

demand for a day (ML/d).  As for NSE (0.81), a value close to 1 suggests that the model has good 

predictive skills. 

Next the model performance was assessed against a Naive Estimator, i.e. we simply set all forecasts 

to be the value of the last observation, 𝑦𝑡+ℎ|𝑡|̇   =  𝑦𝑡. We then compared the performance of the naive 

model against the XGBoost model (Figure: Not Shown). The naive model seemed more lagged. The 

XGBoost model also outperformed in terms of Mean Absolute Error by 84.9 ML/d (MAE of the Naive 

model > MAE of XGBoost model). 

 

4.6 Operationalisation 

4.6.1 Operationalisation within a context of continual improvement 

While the analysis above has focused on fundamental metrics, our ultimate intention is that end-users 

of forecast are provided with the information and tools needed to be able to form their own 

assessment of the performance of the forecast in terms meaningful to them, to be able to identify 

periods of time when the forecast may perform poorly, and report failures of the model to inform 

further model development. Operationalisation of the models presented in this report is therefore 

expected to include 1) production of demand forecasts using live data, 2) processes for regular 

performance review of the demand forecasts, and 3) communication of suitable performance 

information.  
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Table 9. Metrics used to assess the model performance 

Metrics Score Description Formula 

RMSE (ML/d) 498.05 Root Mean Square Error (model) 

√
1

𝑁 
∑(𝑦�̇�  −  𝑦𝑖

𝑖)
2

𝑁

𝑖=1

 

MAE (ML/d) 353.99 Mean Absolute Error (model) 
∑

|(𝑦�̇�  −  𝑦𝑖)|

𝑁

𝑁

𝑖=0

 

Max_Error (ML/d) 2147.25 Maximum Error value (model)  

Bias -1.71 Bias (model) ∑ (𝑦𝑖   − 𝑦�̇�)
𝑁
𝑖=0

𝑁
 

Relative_Bias 0.00 Relative Bias (model) ∑ (𝑦𝑖   − 𝑦�̇�)
𝑁
𝑖=0

𝑁 ⋅ 𝑦
 

NSE 0.81 Nash-Sutcliffe Efficiency 
1  −  

∑ (𝑦𝑖   −  𝑦�̇�)
2𝑁

𝑖=0

∑ (𝑦𝑖   −  𝑦)2𝑁
𝑖=0

 

 

Production of demand forecasts using live data involves ingestion of live weather forecasts, SCADA 

information and any other necessary time-varying inputs. The output of forecasts needs to be stored 

and archived (for performance review) and delivered to the operations team placing river orders. In 

general, deployment and maintenance would be handled by a combination of external expert support 

and in-house IT staff. As with any new IT asset, minimising downtime would be expected to require 

some level of ongoing attention. 

Regular performance review requires input from at least the operations team and staff with sufficient 

data science training to be able to interrogate problems raised and formulate descriptions of forecast 

defects in an actionable manner, producing unambiguous test cases and testable hypotheses for 

further model development.  

In the context of the One Basin CRC, it is proposed that in addition to any in-house support, there is 

potential for long-term input from researchers to play this role. Where in-house support or 

consultants may be able to address obvious defects or well-defined issues, integration with research 

allows for broader experimentation with more difficult hypotheses and increased transferability of 

fundamental knowledge and learning across regions. 

The review process provides a mechanism for the team to document issues that the currently 

operational algorithms are facing, as well as to run new algorithms in parallel and evaluate how they 

would have performed if they were operational. It is anticipated that three demand forecasts would 

be reviewed: the current operational model, a “staging” model in contention to be adopted as the 

new standard, and an experimental/”unstable” model used to test new ideas.  

The speed with which new models would be adopted depends on resourcing and the maturity of 

processes in the organisation. Initially, it is expected that a high number of failures may be observed 

given the relative simplicity of the model and initial assessment framework. Staging models that fix 

the observed defects would be quickly adopted. Over time, diminishing returns are expected, and 

more extensive research and development may be required to address defects. However, as the 

assessment framework will also have matured, it should become easier to demonstrate the superiority 

of a new model, and therefore shorten time to adoption.  
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It is expected that ongoing evaluation of the operational model will gradually accumulate examples of 

failures of a forecast. Diagnostic metrics will support root cause analysis of the failure. Within a quality 

assurance framework, the archived forecast will be flagged, and time periods will be logged as test 

cases that demonstrate a system behaviour that is meaningful to operators and that future forecasting 

models need to be able to adequately simulate. These test cases will generally be associated with 

specific hypotheses about patterns of system behaviour. For example, a collection of missed rain 

events could be produced on which it is hypothesised that either weather forecast improvement is 

needed (which would reduce the number of missed rain events) or better modelling of irrigator 

behaviour is required. In some cases, the time periods may instead be flagged as outside the scope of 

demand forecasting, e.g., it may not be necessary for the model to perform well in times of flood. 

A “staging” model may be adopted if the test cases effectively communicate that it is superior over 

the operational model according to suitable performance information. Not all test cases may be of 

equal interest – performance is judged through risk or control informed metrics. The regular 

performance review would document the risk management mechanisms that were used with the 

existing operational model. For example, if the operator believes the model to have a systematic bias 

in certain conditions, they may have added a larger than usual margin of safety. They may have refilled 

storages as insurance or drawn down storages to compensate for unexpected changes elsewhere in 

the system. Performance is therefore judged taking into account these management mechanisms and 

the cost, effort or desirability of their use. 

To summarise, the assessment framework is intended to fit within a regular performance review 

process that addresses the questions: 

• Issues faced in forecasting and ordering in the last period 

• Evaluation of operational, staging and experimental forecasts 

• How well did they do? 

– What risk management mechanisms were used? 

– What were the underlying causes of good or poor performance? How do we know? 

• Discussion of future changes  

– Logging of forecast defects 

– Identification of test cases and hypotheses for model improvement 

– Identification of possible changes to performance metrics 

 

4.6.2 Risk management considered within assessment framework 

Strategic business risks to be tackled by the assessment framework include: 

• Ability to meet demand needs of customers across the short term 

• Ability to adjust to customer ordering preferences due to flexible levels of service, adverse 

weather conditions etc. 

• Ability to adjust to supply side factors such as river resource availability, transmission losses 

and diversions, losses and storage levels in the short term   

• Ability to adjust to organisational interventions to mitigate demand and supply side risks 

These business risks bear similarity with other problems in which balancing supply and demand are 

important, e.g., in the electricity industry. 



 

QS2_FinalReport_PublicJan2025 (Edited) - NR 55 
 

Meeting customer demand is a core business obligation.  The forecast gap between demand and 

supply needs to be able to be managed through organisational risk management, in particular use of 

storages. Due to time delays in water delivery, any errors in 24-hour forecasts already need to be able 

to be managed through surge reservoirs and drawing down channel water levels or airspace. Errors in 

longer forecasts (7-day in particular) are additionally managed by adjusting orders over time as well 

as by river operations anticipating changing conditions.  As water can be moved through the 

landscape, there is potential for complementary forecasting of, for example, flows between surge 

reservoirs, which was outside the scope of this case study. 

It is additionally desirable to be able to meet actual customer consumption even if it changes at short 

notice. Water users face uncertainties, particularly related to weather conditions, and irrigation 

infrastructure operators already share this risk by providing flexibility to change orders. Demand 

forecasts are expected to become more precise as lead-time decreases (their uncertainty decreases), 

but longer term forecasts are still expected to already be accurate, i.e., they already include 

consideration of potential for customer consumption to change. This depends on performance of 

weather forecasts in particular, but is also likely to require forecasting of differences in customer 

behaviours in future. 

Errors in demand forecasts may be either compensated or aggravated by errors in supply forecasts. 

Errors in demand have more impact when supply is constrained. Conversely, for other conditions, 

investment in complementary forecasts may be more valuable than investments in improving demand 

forecasts. Forecasting network losses and river resource availability can reduce error in forecast 

supply-demand gap. Forecasting storage and diversion volumes provides more precise information on 

the gap that can be tolerated across zones in the network. This may be affected by asset failures that 

affect both delivery reliability and quality of data inputs to forecasts. Both demand and 

complementary forecasts should consider this risk. Volume discrepancies and higher than expected 

flows may also cause water level stability disturbances within gravity irrigation systems – forecasts of 

demands should be sufficiently accurate to minimise their occurrence. 

Demand and supply risks are mitigated by management of water storages and water levels across the 

irrigation network, with consideration of demand across zones, storage and flow capacities and their 

degradation over time, and location and severity of the resulting constraints. Performance is also 

affected by how upstream and downstream actors (e.g. river operators and water users) manage their 

risk. Ultimately, demand forecasting performance is therefore one component of broader delivery 

reliability performance. It also worth noting that this, and other metrics are likely to be commercially 

sensitive and may also affect negotiations between actors within the system. Who each metric is 

computed by and shared with therefore depends on the use case and the organisations involved. 
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5 Use cases to support whole-of-cycle water 
management 

Short-term demand forecasting to support irrigation district water ordering constitutes one possible 

use case for demand forecasting algorithms. The remit of this component of the project was to identify 

and scope a broader suite of potential use cases for demand forecasting than that which was explicitly 

developed and tested in Section 4 with project industry partners.  Five tentative use cases have been 

developed which are in intended as boundary objects to facilitate discussions between One Basin CRC 

partners as well as other key stakeholders around future opportunities for demand forecasting 

technologies to support multi-stakeholder water delivery and storage management to achieve 

multiple benefits. 

 

5.1 Methodology 

The process of identifying and developing use cases draws on a Design Science Research (DSR) 

methodology, aiming at developing and testing innovative “artifacts” such as processes or models. 

The primary objective is to enhance existing practices, advance research knowledge, address real-

world problems, and facilitate transformative societal changes (Vom Brocke et al., 2020). Typically, 

three iterative and interacting steps are defined: problem identification, solution design and 

evaluation (Offermann et al., 2009); a conceptualisation of each phase for this project is shown in 

Figure 26.  

 

Figure 26. Conceptual process for developing and evaluating use cases and their associated deployment and adoption pathways (adapted 

from Offermann et al., 2009) 
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5.1.1 Problem identification 

The problem identification phase initially involved a targeted literature review on the concept of 

‘Integrated Storage System’ (see Section 1.2). The intent was to contextualise demand forecasting 

approaches as a tool to support whole-of-water-cycle management and to identify relevant factors 

for framing use cases for demand forecasting models. A case study analysis of the Murrumbidgee River 

Catchment was then conducted to identify potential roles for demand forecasting across temporal, 

spatial and governance scales. This was achieved through analysis of secondary data sources such as 

NSW and federal government reports, irrigation district compliance reports and relevant published 

and grey literature, and discussions with project partners. Through this analysis, key actors, their roles 

and responsibilities, and their main challenges were identified, alongside potential ways in which 

demand forecasting might enhance their planning and decision-making processes. Five overarching 

themes emerged as the basis for use case development: river operations, conjunctive uses of surface 

and groundwater, coordination of river and irrigation districts’ operations, water markets, and 

supplementary water announcements. 

 

5.1.2 Solution design 

The solution design phase entailed the iterative development of use cases guided by the five 

overarching themes. Conceptual models have been developed to depict various actors’ roles and their 

interactions, key constraints and potential ways in which demand forecasting approaches could 

support the operational, investment and strategic planning decisions of these actors. A targeted 

literature review was conducted to explore the types of demand forecasting models and approaches 

that have been applied in similar decision contexts. Each preliminary use case has been summarised 

in a tabular template that outlines the actors involved, the goal of demand forecasting and the context 

in which the use case occurs, the necessary requirements for demand forecasting to be useful, and 

alternative strategies that might also achieve the goals. 

 

5.1.3 Evaluation 

The evaluation phase comprises the iterative evaluation and refinement of the use cases guided by 

feedback from partners and stakeholders. Internal testing with the project research team and industry 

partners has been conducted and further engagement has commenced with project partner 

organisations and key stakeholders (non-partners) involved in water delivery and management of the 

Murrumbidgee River catchment. Within this project, the use cases have not been comprehensively 

tested with stakeholders external to the project. There may be some redundancies or overlap in the 

opportunities identified across the use cases and that some might not be considered desirable or 

feasible. Opportunities to further test these use cases will be sought through engagement with the 

‘Reducing uncertainties and enabling multiple benefits in water delivery operations (CRC058)’ project. 

 

5.2 Potential use cases 

Figure 2 positioned the five use cases across the hierarchical levels (operational, tactical and strategic) 

and four spatial scales (farm, irrigation district, catchment and region) where decisions and activities 

of key actors are currently focused. All are positioned across the operational and tactical levels, with 
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the use cases related to water trading and conjunctive use of water sources also extending to the 

strategic level. This emphasis on operational and tactical levels aligns with this project’s aim of 

enhancing irrigation district companies’ ability to coordinate water orders with river operators and 

EWH as well as to ensure reliable water supply to their customers. Their operational decisions typically 

focus on short (hourly)- to medium-term (seasonal) time horizons but do extend to longer-term 

strategic planning.  

Opportunities for demand forecasting were identified that could address critical challenges identified 

during the literature review and analysis of secondary data. These opportunities – which are 

summarised in Figure 27 to Figure 31. and subsections 5.2.1 to 5.2.5 for each use case – can extend 

across the hierarchical planning scales and spatial levels. This reflects the types of demand forecasting 

approaches identified from the literature and the time horizons at which they have been applied to 

similar decision contexts; the spatial scales represent the breadth of actors (from farmers to 

government agencies) who might be interested in the challenges and demand forecasting 

opportunities. 

 

5.2.1 River operations in the Murrumbidgee River catchment 

Achieving benefits from water delivery involves a broad range of decision makers and stakeholders. 

There is potential for even incremental changes to mechanisms for coordination and collaboration to 

transform management of the water system and river operations to improve the range of benefits to 

communities, environment and industry from water deliveries. Demand forecasting can help improve 

multi-stakeholder understanding of future water demand variability across the river system and 

associated uncertainties across time and space. In addition to better forecasts, this could involve 

models of changes in behaviour over time, and more systematic coordination of water deliveries for 

different stakeholders. This opportunity will be further explored in the ‘Multiple Benefits’ project, 

which will examine how water system operators make decisions and why, including their decision 

criteria, the rights and responsibilities for water delivery and water accounting, and the information 

or tools operators use to support decisions. 

Water users within the Murrumbidgee River Basin rely heavily on water releases from the Burrinjuck 

and Blowering dams, particularly in the dry season when there is about 60% reliance on the Burrinjuck 

dam for water deliveries to MI and CICL offtakes (DPE, 2021). NSW DCCEEW determines water 

allocations for entitlement holders by considering factors related to water in storages, future inflow 

estimations, consideration of evaporation, transmission and operation losses, minimal flows for the 

end of system and environment, and carryover (DPE, 2021). The responsibilities of WaterNSW include 

managing water in storages (natural and artificial) and water deliveries to licensees which include the 

IIO and their customers, private irrigators and EWH.  

The timing of orders and deliveries varies by allocation (and other announcements), different types of 

licensees, their location along the river system and their water needs over time. Orders made by 

irrigators vary based on crop types, planting area and planting time, especially for water-intensive 

crops, and other factors that influence when they choose to water (e.g. off-farm employment; off-

peak energy periods). Crop types and planting areas may also fluctuate based on crop and fuel prices 

as well as rainfall event opportunities (CICL, 2023, MI, 2016).  

WaterNSW and the IIO deliver water to the environment on behalf of the EWH and environmental 

managers to support watering actions. Key wetlands include the Mid-Murrumbidgee Wetlands 

between Gundagai and Hay, the Lowbidgee wetlands, wetlands in the MI area of operations including 
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Fivebough, Tuckerbil and the Barren Box Swamps, the Lower Mirrool Creek floodplain, the Yanco and 

Billabong Creek systems and wetlands within the CICL area of operations which include wetlands on 

private or CICL managed reserves that support breeding subpopulations of the southern bell frog 

(Litoria raniformis). Ecological objectives across these wetlands include maintaining or restoring 

ecological function, the extent and condition of water-dependent vegetation communities and 

supporting the diversity and abundance of wetland fauna populations (SKM, 2011). Watering actions 

aimed at achieving these objectives vary depending on the prevailing climate scenario and conditions 

in previous years.  

Three opportunities have been identified for the use of demand forecasting approaches to support 

river operations (Figure 27 and Appendix A). 

1. Estimate future demands and uncertainty: Aggregate water demands within irrigation 

districts are inherently uncertain reflecting the spectrum of individual customer decisions 

taken from day-to-day and over and between seasons. These decisions can be influenced by 

numerous agronomic, climate, environmental, water availability, commodity and market, and 

irrigator enterprise factors. Long-term sectoral demand forecast accounting, such as the unit 

water demand analysis method (Rinaudo, 2015) could be applied at the irrigation district 

scale.   

2. Update forecast models to account for changes in water demands: A critical challenge for IIO 

is to accurately anticipate the (sub-)daily decisions of their customers. Timeseries data are 

used to forecast demand in practice, although they may fall short of effectively anticipating 

real-time decisions if not applied at the right spatial scale. Additionally, they have limited 

capacity to capture the impacts of unforeseen events like high rainfall events on customers’ 

decisions. Enhancing the reliability of timeseries data for long-term horizons (above two years) 

and better capturing factors influencing changes in water demands could be realised using 

adaptive forecasting algorithms. These algorithms can estimate adaptive parameters and if 

the alternative set of parameters performs better than the current one, the algorithm 

automatically updates the current parameters and reports a model switch (Chen and Boccelli, 

2014). 

3. Coordinate water deliveries for irrigation and the environment: WaterNSW and the 

irrigation districts are responsible for delivering water to the environment on behalf of the 

EWH and environmental managers. Flow regime requirements and associated watering 

actions are informed by seasonal climate scenarios (extreme dry, dry, moderate and wet). 

Physical and operational constraints as well as infrastructure works may affect actual water 

deliveries actions and possible alternative watering options or carryover (SKM, 2011). Short-

term (e.g., daily) and long-term (e.g., seasonal) ensemble flow forecasting (Ahmad and 

Hossain, 2020) for the prevailing climate scenario could support the irrigation companies, 

WaterNSW, regulatory bodies and environmental agencies in their efforts to coordinate 

irrigation and environmental watering actions. Approaches could be developed in the 

context of river operations through multi-level partnerships with IIO’s, river operators and 

EWH, that can build on and complement existing technologies, notably the CARM 

(Computer Aided River Management) system developed by DHI consulting for WaterNSW12. 

 
12 CARM integrates models reproducing key catchment and river processes with real-time measurements. The system is intended to 
provide users with an overview of current and forecasted water inflows to inform operational decisions and ensure reliable and timely 
deliveries to particular locations. This is achieved in part by providing automated processes to import future water demands as well as 13 
13 forecast and data series archiving (https://water.dpie.nsw.gov.au/__data/assets/pdf_file/0005/491576/Computer-Aided-River-
Management-System-for-the-Murrumbidgee-River.pdf).  

https://water.dpie.nsw.gov.au/__data/assets/pdf_file/0005/491576/Computer-Aided-River-Management-System-for-the-Murrumbidgee-River.pdf
https://water.dpie.nsw.gov.au/__data/assets/pdf_file/0005/491576/Computer-Aided-River-Management-System-for-the-Murrumbidgee-River.pdf
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Figure 27. Mapping of possible demand forecasting opportunities across hierarchical levels and spatial scales for the ‘Enhancing river 

operations in the Murrumbidgee River Region’ use case. Icons represent types of decisions or purposes: operations or water orders ( ) 

and environmental water ( ). 

 

5.2.2 Influence of conjunctive use of surface water and groundwater on 
water orderings from irrigation districts 

Groundwater and surface water are both used in the Murrumbidgee, and there is potential to better 

understand how they are used and to better coordinate between users and across scales to maximise 

benefits, particularly for dry years. The Lower Murrumbidgee Alluvium – comprised of the Lower 

Murrumbidgee Shallow Groundwater Source (Shepparton formation) and deposits in the Calivil 

Formation and Renmark Group that comprise the Lower Murrumbidgee Deep Groundwater Source – 

underlies the MI and CICL districts and nearby areas. The latter is the more productive aquifer in which 

the majority of bores registered for production purposes extract from (DPE, 2022). Changes in water 

tables and salinity in these aquifers are influenced by factors such as rainfall patterns, irrigation 

system, pumping intensity and land management. The area between Hay, Coleambally and Griffith 

was identified in 2007 as an area of concern due to groundwater extractions and their due to 

cumulative impacts on the aquifer and other groundwater users, leading to the establishment of two 

local trade management areas (DPE, 2022). 

Diversification of water supply (e.g., groundwater, recycled water) and demand (e.g., on-farm 

storages, smart technologies, water trading) options complicates the anticipation of IIO customer 

demand for regulated surface water. Access to diverse water supply alternatives can significantly 

enhance the reliability of irrigation water for farmers. These alternatives, including groundwater, 

recycling systems, on-farm water storages, reticulated water, unregulated water and soil moisture, 

play a pivotal role in farmers’ decisions to invest (or not) in water allocation licenses. Factors such as 

storage levels, seasonality, potential for rainfalls, climate variability, fuel costs, and water availability 

and prices impact farmers’ decisions to order regulated surface water  (CICL, 2023, MI, 2016).   
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Three opportunities for demand forecasting are identified (Figure 28 and Appendix B) to support a 

shared understanding of interactions between groundwater extractions and regulated surface water 

orders from irrigation districts:  

1. Evaluate the influence of changes in energy costs and technological access on groundwater 

extraction   

2. Estimate crop application rates (i.e., the amount of water from available supplies to water 

crops according to their development stage) based on integrating surface water, groundwater 

and soil moisture data and  

Evaluate the implications of relative availability and quality of groundwater and surface water under 

prolonged dry conditions. 

 

Figure 28. Mapping of possible demand forecasting opportunities across hierarchical levels and spatial scales for the ‘Influence of 

conjunctive use of surface water and groundwater on water orders’ use case. Icons represent types of decisions or purposes: operations 

or water orders ( ) and crop choices or agronomic decisions ( ). 

 

 

5.2.3 Irrigation district operations and coordination with other actors 

Within the MI and CICL irrigation districts coordination is needed between the IIO and other actors 

(irrigator members, WaterNSW, EWH and NSW DCCEEW) to deliver water for multiple uses, over 

space and time and under different climate conditions. This use case can be considered a subset of 

“River operations in the Murrumbidgee catchment” (Section 5.2.1) focused on management of risk by 

irrigation districts. 

In the Lower Murrumbidgee River Catchment, aligning water orders is crucial for effective river and 

irrigation district operations as well as farmers and environmental water managers’ watering actions, 

among other water users. The timing for orders poses a major source of uncertainty for water 
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operators and could potentially lead to water restrictions if available flow rates fall below daily orders 

(CICL, 2022a). Farmers within districts can adjust their orders within a two-hour window (CICL, 2023, 

MI, 2016). Climate conditions and opportunities for in-crop rainfalls significantly influence irrigator 

orders. 

Different storages and wetlands within CICL and MI aim to buffer potential changes in water orders 

during the peak season, reducing the risk of misalignments with WaterNSW (CICL, 2023, MI, 2016, MI, 

2021). Orders from private irrigators after Darlington Point are directed to WaterNSW, with 

conveyance times varying based on location and channel capacity. The Tombullen Storage in CICL 

serves as a buffer to manage water orders during the peak season, with WaterNSW placing orders for 

filling or releasing water with a two-hour window. This timing impacts flow rate availability in CICL 

drainage system and water delivery reliability to different water users, including the Environment 

(CICL, 2023). Additionally, this storage enhances peak height and duration during piggyback events 

(Allen, 2019). 

Environment water requirements also influence water order alignment, with monthly flow regimes 

varying according to four climate scenarios for various assets within and outside of Irrigation District 

areas, including the Murray River system (SKM, 2011). Agreement between the Environmental Water 

Holders (EWH), NSW DCCEEW and MI facilitate the delivery of water to wetlands, typically before or 

after the peak season  (SKM, 2011). As for CICL, recent agreements with NSW DCCEEW (formerly DPIE) 

allow private landowners in the western part of the district to voluntarily water wetlands within CICL 

(CICL, 2022b). 

Four opportunities for demand forecasting are identified to explicitly consider the integrated 

operation of storages within the district (Figure 29 and Appendix C). 

1. Anticipate water restriction events under different climate scenarios. This role includes the 
consideration of prolonged dry conditions and high flow events that could hinder monitoring 
of surface water availability. 

2. Anticipate climate and maintenance impacts on the alignment of water orders and flow 
regime requirements. 

3. Estimate off-stream storages’ lag time to refill/ emptying events. This role aims to inform 
operation decisions, including investments in supply and demand management options.  

4. Estimate the risk from contract agreements or incentives. This role aims to consider the 

influence of farmers’ locks-in contracts or incentives on farmers’ behaviour and planting of 

water intensive crops, especially under inadequate climate conditions. 
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Figure 29. Mapping of possible demand forecasting opportunities across hierarchical levels and spatial scales for the ‘Irrigation district 

operations and coordination with other actors’ use case. Icons represent types of decisions or purposes: operations or water orders                

( ) and environmental water ( ). 

 

5.2.4 Water trading in the lower Murrumbidgee River Catchment 

Water trading affects where and when water is used and conversely, forecast water demand can 

influence water trading behaviours. NSW Government or delegated entities are responsible for 

effectively operating, approving and processing water trades based on relevant rules and regulations. 

Key drivers of water entitlement market outcomes include the value and price of water entitlements, 

which rely on the level of security as well as by longer-term production decisions and characteristics 

of different users, including their risk tolerance. Water allocation market outcomes are primarily 

influenced by water allocated to water access license (WAL) holders each year and opportunities for 

in-crop rainfalls (Aither, 2017).  

The Murrumbidgee River Catchment represents the largest market in NSW by volume of entitlements 

issued, totalising 3,934,823 ML of water. Most of the water is allocated to general security (GS, 52%) 

compared to 10% for high security (HS), with 23% of general security held for the environment. 

General security entitlements are generally less secured but offer more flexible trading, with up to 

30% eligible for carry-over each year.  

Other main entitlements include Aquifer and Supplementary entitlements. These entitlements are 

typically the most secure with limited flexibility for carry-over (up to 2 ML per unit share) or trading 

(restricted). Supplementary entitlements, representing 26% of the total entitlement issued, are mainly 

held for the environment and can only be accessed on announcements during high flow events, with 

no carry-over and restricted trading.  

Intervalley trading is feasible with a number of connected systems (Murray and Lower Darling as well 

as to Victoria and South Australia) but limits apply. Surface water trading generally outweighs 

groundwater trades, with more GS trades than HS trades. Key factors influencing trade include water 

availability in the system and potential for users to obtain water resources through other means; 
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variability in water resources within and between years and across geographic areas, connections 

between systems and water users, minimum number of participants in water markets, heterogeneity 

in demands for water, net increase in water demand over time driven by new investments or activities, 

changes in response (e.g., crop type, land irrigated) to external pressures such as in global commodity 

markets. Additionally, releases from Snowy Hydro Schemes (Aither, 2017) can impact water 

availability and trade, with energy demands influencing trading dynamics. 

Four opportunities for demand forecasting are identified (Figure 30 and Appendix D). 

1. Evaluate the implications of trading unregulated water, new trading products, and changes 

to trading rules and processes on regulated water demand and type of water allocation 

licenses.  

2. Anticipate farmers’ water trading behaviour. This role includes the consideration of climate, 

agronomic, global demand for primary productions, diversification of incomes from primary 

productions, irrigation system, availability of other water supply and demand management 

options. 

3. Evaluate the implications of socioeconomic and ecological changes on water prices and 

trading opportunities.  

4. Anticipate the impacts of releases from Snowy Hydro Scheme on water trading dynamics, 

noting that increased recycling of water with Snowy 2.0 mean suggests that outflows will 

be increasingly dependent on release requirements.  

 

Figure 30. Mapping of possible demand forecasting opportunities across hierarchical levels and spatial scales for the ‘Water trading in 

the lower Murrumbidgee catchment’ use case. Icons represent types of decisions or purposes: operations or water orders ( ), regulation 

and/or compliance ( ), environmental water ( ) and crop choices or agronomic decisions ( ). 

 

 

The first two aim to capture or support the tactical or strategic level decisions of the breadth of 

stakeholders (entitlement holders, irrigation districts, government agencies), whilst the last two are 

positioned to support the operational planning of the irrigation districts and WaterNSW. 
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5.2.5 Water delivery during and after supplementary events 

Maximising benefits of supplementary water events is time sensitive, requiring anticipating demand 

and supply and management of storages. NSW DCCEEW approves WaterNSW announcements which 

specify the location and duration of supplementary water events. Both Supplementary and General 

Security (GS) entitlement holders can divert supplementary flows in accordance with the Water 

Sharing Plan for the Murrumbidgee Regulated River Water Source 2016 (NSW, 2016) . High rainfall 

events or releases from Snowy Hydro Schemes can trigger supplementary events (DPI, 2015). During 

supplementary announcements, environmental watering actions are cancelled and a portion of the 

allocated water carried over (Commonwealth, 2023). GS and conveyance license holders may be able 

to carryover water if water allocations remaining in the water allocation accounts from one year to 

the next remain up to 0.3 ML per unit share (NSW, 2016).  

 

MI and CICL provide an estimation of supplementary water orders to WaterNSW, communicate the 

location and duration of supplementary events to their customers and manage any excess water 

through their system. The timing of supplementary events poses challenges for both IIO, especially 

during low allocation years when demand from customers might exceed the available volume of 

supplementary water. Their capacity to determine the volume of supplementary flows that can be 

extracted by customers is further limited by a lack of knowledge about how much water could be 

stored in on-farm storages. Water delivery is also complicated if the end of supplementary events 

result in customers all ordering at the same time, possibly exceeding availability or capacity (CICL, 

2023, MI, 2016).  

EWH need to decide how supplementary allocations will be used for watering actions (and whether 

some may be held as carry over) and work with WaterNSW and the irrigation districts to achieve 

intended outcomes. Subject to system constraints, piggybacking opportunities may exist to prolong 

watering actions beyond the end of the supplementary event. Piggybacking on irrigation or other 

releases or flow, particularly in Mid-Murrumbidgee wetlands, can be used to prolong high and flood 

flows (SKM, 2011). However, physical or operational constraints and infrastructure works may reduce 

supplementary flows opportunities by limiting channel capacity or flow deliveries (Commonwealth, 

2023). 

Four opportunities for demand forecasting are identified (Figure 31 and Appendix E), namely to: 

• Anticipate risks of restriction after supplementary events. 

• Evaluate the potential for piggybacking for Mid-Murrumbidgee wetlands. 

• Anticipate event timing and capacity to store supplementary water.  

• Anticipate farmers’ demand for supplementary water.  

• Anticipate the costs for maintaining and managing assets.  
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Figure 31. Mapping of possible demand forecasting opportunities across hierarchical levels and spatial scales for the ‘Water delivery 

during and after supplementary events’ use case. Icons represent types of decisions or purposes: operations or water orders ( ), 

supplementary announcements ( ), environmental water ( ) and crop choices or agronomic decisions ( ). 
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6 Demand forecasting adoption and 
deployment options 

Demand forecasting approaches and tools developed for the use cases presented in Section 5.2 would 

vary in how they are deployed and the pathways to them being adopted. Deployment could occur 

through adoption by irrigation districts, by third party forecasting services, through state or federal 

government services or collaborations across organisations (Figure 32).  

 

Figure 32. A systems complexity perspective of the use cases in relation to the advancement and uptake of demand forecasting 

approaches to support water delivery and integrated storage management in the Murrumbidgee. 
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Taking a systems complexity perspective, deployment and adoption pathways will be more obvious 

and feasible where a use case addresses a clearly defined problem (and associated goals) and where 

there are few actors involved in the decision-making and /or implementation of the technology. As 

demonstrated with the algorithms and process for operationalisation developed in this project, short-

term demand forecasting to support irrigation district water ordering could be deployed and adopted 

directly through the irrigation district data science and operations teams. Alternatively, agritech 

providers could provide the technical expertise and infrastructure to deploy, implement (with their 

clients) and adapt demand forecasting algorithms. The ‘Coordination of irrigation district operations’ 

use case is an extension beyond orders for irrigation to planning and coordination (across hierarchical 

planning levels) for the breadth of water deliveries to irrigator and consumptive users and the 

environment. The ‘Water delivery during and after supplementary events’ use case has a relatively 

narrower focus than the other use cases defined in Section 5. For IIO, these relatively rare events 

require time sensitive decisions where demand for supplementary water by customers are influenced 

by antecedent conditions (allocations, available storage) and where operational risks to the IIO can 

arise if (e.g.) restrictions occur or customer orders become synchronized. For EWH, supplementary 

events are an opportunity to implement or prolong watering actions. Given the gamut of constraints 

affecting delivery of water to assets across the Murrumbidgee, these actions require multi-

stakeholder cooperation and planning across hierarchical levels to achieve intended outcomes.  

Use cases that imply transformative change involve more (diverse) parties, each with their own 

(possibly conflicting) goals, processes and responsibilities. Here, deployment options and adoption 

pathways will be less certain and there will be a longer timeframe for change. Emphasis needs to be 

given to negotiation and coordination between parties and identifying opportunities to leverage and 

add value to existing demand forecasting or alternative technologies or strategies. ‘River operations’ 

is the most complex of the use cases defined in Section 5, arguing that improved coordination and 

collaboration of the water system and river operations to improve the outcomes for communities, 

environment and industry. The use cases spans all actors involved in water use and operations 

decisions (with WaterNSW acting as the custodian of the State’s water resources and the conduit to 

IIO, EWH and other customers) and planning across geographic and planning scale. There is little 

demand currently from operators and water uses for coordinated and conjunctive management of 

water use and orders. Shifting to a paradigm of conjunctive use is a large change from the current 

paradigm, although the local geographic scale reduces the complexity of this use case relative to ‘River 

operations’. Similarly, ‘Water trading in the Murrumbidgee’ is relatively less complex as a use case for 

demand forecasting as it is situated within the existing rules and water markets paradigm. The 

complexity of this use case stems from the breadth of actors involved and geographic scales at play. 

Incremental progress on the less complex use cases can arguably be made by working with these key 

actors or groups. The One Basin CRC offers the opportunity to make progress on the more complex 

uses cases through the partnerships between universities, government agencies, industry groups, IIO, 

NRM agencies and communities. The potential for this work to develop further through the Multiple 

Benefits (CRC058) project was outlined in Section 5.2.1. The potential exists to progress opportunities 

identified through the conjunctive use and water trading through the ‘Water Banking for Drought 

Resilience’ (CRC054) and ‘Unlocking Collaborations for Transformation’ (CRC050) projects 

respectively. 
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7 Conclusion 

This report introduced the project motivation, framing and scope for the ‘Irrigation demand 

forecasting and its role in multi-scale system storage control’ collaboration. The project developed, 

evaluated and initiated the operationalisation of demand forecasting algorithms to support the short-

term water ordering operations of CICL and MI. Beyond this component, the team identified other use 

cases where new or existing demand forecasting tools can improve water delivery across the 

landscape and considered the pathways for deployment and adoption of demand forecasting 

technologies. This QuickStart project is a catalyst for incremental transformation by building and 

implementing predictive modelling capability in network management and by documenting our 

understanding of how the Murrumbidgee catchment operates and the potential leverage points to 

improve water operations and delivery. 

Short-term (0-7 day) algorithms for forecasting total system daily demand were developed for the 

Main Canal of Murrumbidgee Irrigation (MI) and the main area of the Coleambally Irrigation 

Cooperative Limited (CICL) districts. Evaluation focused on performance at critical times for MI and 

CICL and involved the project team meeting regularly with operations staff to work through the 

opportunities and challenges to operationalisation and continuously improve the algorithms beyond 

the project; both CICL and MI have initiated internal processes to formalise this. Demand forecasting 

has been demonstrated through this component to be both valuable and achievable for water 

network operators and that the increasingly data-rich environment will support continuous 

improvement of the algorithms to support network management objectives. 

Beyond short term water ordering, demand forecasting advances could complement existing 

technologies and processes used by key actors involved in decisions across planning scales that relate 

to water ordering, delivery and use by environment, irrigation and consumptive users in the 

Murrumbidgee. The project identified five further use cases for which demand forecasting 

technologies might be developed and applied to support water delivery and river operation decisions. 

The relative complexity of the decision contexts vary from use cases on focused issues (supplementary 

events) or users (irrigation districts) to more complex multi-actor, multi-scale (and ultimately 

transformative) use cases that lend themselves to exploration and advancements through the 

partnership model of the One Basin CRC. 
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Appendix A. River operations in the Murrumbidgee 
River Catchment 

Opportunities for demand forecasting to tackle some challenges related to the use case. 

(Numbers under brackets aim to link comments to the example demand forecast models) 

What role(s) could demand forecasting fill? 

[1] Estimate future demands and uncertainty (e.g., changes in crop types and planting areas during the peak 

season of November-December, fluctuations in Tombullen storage due to private farmers’ demand or the 

impact of maintenance works on conveyance).  

[2] Update forecast models to account for changes in water demands. This role considers adaptive updates of 

demand forecasts). 

[3] Coordinate water deliveries for irrigation and the Environment. This role includes the alignment of watering 

actions with irrigation, according to four climate scenarios (extreme dry, dry, moderate, wet). 

Do existing demand forecasting or alternative algorithms or strategies exist to fill these roles? 

• [1] Unit water demand analysis method to develop sectoral demand forecast accounting for expected 
population growth, change in economic activity per branch. With demand represented spatially using GIS 
information (Rinaudo, 2015). 

• [2] Vectorised double-seasonal ARI (autoregressive integrated) model to capture both temporal 
correlations and spatial variations in demands. Adaptive forecasting algorithm: GLR (Generalised Likelihood 
Ratio), monitoring the ratios of likelihoods for a current set of parameters and an alternative set of 
parameters computed from recent observations. If the alternative set of parameters perform better than 
the current one, the algorithm automatically updates the current parameters and reports a model switch 
(Chen & Boccelli, 2018). 

• [3] Short-term (daily) and long-term (season) ensemble flow forecasting using ANN and co-optimisation of 
multiple reservoir operations. Ensemble forecast forcings from publicly available numerical weather 
predictions were used to generate daily and monthly scale inflow forecasts (scenario years: dry, moderate, 
wet) (Ahmad & Hossain, 2020). 

• CARM (Computer Aided River Management) system, developed by DHI consulting for WaterNSW to 
enhance weirs and dams’ operations in the Murrumbidgee River system and reduce operation losses. 
CARM is driven by MIKE OPERATIONS and integrates models reproducing key catchment and river 
processes with real-time measurements. The objective is to provide river operators with an overview of 
current and forecasted water inflows to inform operation decisions and ensure reliable deliveries to 
relevant locations at the right time. Build-in models consist of NAM Rainfall Runoff model (MIKE 11 NAM) 
to describe rainfall and runoff; MIKE for evaluating groundwater seepage and surface water evaporation; 
MIKE 11 (MIKE HYDRO River) to account for river hydraulics and storages in the river, at weirs and in 
wetlands (Van Kalken et al., 2012). In 2018, rolling-out a derived version of CARM, CARM Lite across all 
regulated valleys in NSW was considered by the NSW Government to predict tributary inflows and improve 
the effectiveness of water operations (IPART, 2019). 

What is needed for demand forecasting to be useful / feasible? 

• Data / knowledge: Under different climate scenarios: [1] unit water consumption coefficients (per user 
types) and estimated future number of users per category (Rinaudo, 2015). [2] hydraulic information; 
observed demand timeseries: total system demands and regionally aggregated demands (in the paper), the 
latter aiming to capture the spatial variability in demands across a network (Chen & Boccelli, 2018). 

• Institutional / relational processes: multi-level partnerships with water users, regulatory bodies, (Snowy 
Hydro) and environmental agencies to optimise water management practices (Wang, 2021); co-innovation 
processes including on-farm and off-farm stakeholders for coordination of on-farm water uses and 
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management; consideration of the influence of regulatory, climatic, infrastructural and hydrological factors 
on on-farm irrigation decisions (Srinivasan et al., 2017). 

Key opportunities and constraints/risks associated with role(s) 

• [1] constraint: does not account for possible future changes in unit water consumption due to evolving 
water tariffs or household incomes among others; opportunity: consumption coefficients could be 
considered as variable with time, extrapolating their future direction from past trends. Advantages: useful 
where little or no data are available, provide transparency, easily understood by stakeholders. 

• [2] constraint/opportunity: adaptive forecasting algorithms are expected to aid in reducing forecast errors 
for long-term time horizons (above 1-2 years) and account for factors driving water consumption changes.  

Potential stakeholders 

• MI and CICL: responsible for water operations (ordering, deliveries, asset maintenance, groundwater and 
water quality monitoring, environmental watering) in their area of operations. 

• Environmental water holder: Ensure connectivity of and water provisioning to key ecosystems in the 
Murrumbidgee Catchment and Murray River to ensure functionality, services, and biodiversity 
conservation. 

• WaterNSW: responsible for managing water in storages (natural and artificial), water deliveries to licensees 
(including environmental flows), raw water quality monitoring (surface and groundwater), announcements 
of exceptional events (e.g., supplementary water, restrictions). 

• Private irrigators below Gogeldrie Weir: orders may vary according to the location along the Low 
Murrumbidgee River system. 

• DHI consulting: mandated to develop the CARM system by WaterNSW to improve river operations and 
better account for evaporation, transmission and operation losses affecting water availability and the 
reliability of deliveries to customers (including the Environment). 

Information source used to identify and develop the use case 

Ahmad, S. K., & Hossain, F. (2020). Forecast-informed hydropower optimization at long and short-time scales 

for a multiple dam network. Journal of Renewable and Sustainable Energy, 12(1), 014501. 

https://doi.org/10.1063/1.5124097 

Chen, J., & Boccelli, D. L. (2018). Forecasting Hourly Water Demands With Seasonal Autoregressive Models for 

Real-Time Application. Water Resources Research, 54(2), 879–894. https://doi.org/10.1002/2017WR022007 

CICL. (2023). Annual Compliance Report 2023 [Compliance report]. Coleambally Irrigation Co-operative Limited. 

https://www.colyirr.com.au/annual-compliance-report 

IPART. (2019). WaterNSW Operational Audit 2019 [Compliance report Water]. Independent Pricing and 

Regulatory Tribunal. https://www.ipart.nsw.gov.au/sites/default/files/documents/report-to-the-minister-

waternsw-operational-audit-2018-19-18-december-2019.pdf 

Knight Merz, S. (2011). Environmental Water Delivery: Murrumbidgee Valley, January 2012 V1.0. 
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Appendix B. Influence of conjunctive use of surface water 
and groundwater on water orderings from irrigation 
districts 

Opportunities for demand forecasting to tackle some challenges related to the use case. 

(Numbers under brackets aim to link comments to the example demand forecast models) 

What role(s) could demand forecasting fill? 

[1] Evaluate the influence of changes in energy costs and technological access on groundwater extraction 

sustainability. 

[2] Estimate crop application rates (i.e., the amount of water from available supplies to water crops according to 

their development stage) based on integrating surface water, groundwater and soil moisture data. 

[3] Evaluate the relative availability and quality of groundwater and surface water under prolonged dry conditions. 

Do existing demand forecasting or alternative algorithms or strategies exist to fill these roles? 

• [1] DT, optimised with a Genetic Algorithm (GA) to predict irrigation amount based on farmers’ decisions 
about when to irrigate, providing information of when to schedule irrigation and aiding in coordinating 
irrigation activities to minimize energy and water losses. Realised with drip-irrigated tomato and maize and 
flood-irrigated rice (González Perea et al., 2019). 

• [2] AQUACROP coupled with LSTM model to develop a predictive irrigation scheduling system to maintain soil 
moisture within a set of lower and upper bound, with the irrigation amount defined as the water depth 
necessary for replenishing soil water to a certain threshold (Adeyemi et al., 2018). 

• [3] Data-driven models (DDM) to forecast different regimes of water tables one to five months ahead (lead 
times) in response to hydro-climatological forcings and water management. In water shortage conditions, 
extreme learning machines and Genetic Programming (GP) providing higher forecast accuracy for short lead 
times, while ANNs were less sensitive to increase in the forecasting horizon (Amaranto et al., 2018). 

• [4] Near ecological forecasts to predict ecological responses to droughts and floods, changes in carbon and 
biochemical cycles, algal blooms, wildfires, among others (Dietze et al., 2018). 

• [5] Transformer neural network (TNNs) model, optimised by NSGA-II to forecast daily irrigation water 7 days 
ahead and automatically adaptation throughout the irrigation season. Account for water management and 
energy contracting in irrigation districts considering current and expected scenarios of water scarcity and high 
energy prices (González Perea et al., 2024).  

What is needed for demand forecasting to be useful / feasible? 

• Data / knowledge: [1] daily climate and daily irrigation data over one year; [2] historical soil moisture and 
climate data to predict water in soil. [3] consideration of monthly crop water demand as a proxy for human 
impacts on groundwater (including irrigation system), monthly precipitation, monthly snowmelt, monthly 
evapotranspiration. Could include pumping data if available. Water table monitoring timeseries data over 
three years, daily and monthly, using USGS. [4] For decision-making, due to long-term consequences based on 
present decisions, need for relevant decision metrics at appropriate spatial and temporal scales; inclusion of 
uncertainty in risk management decisions. [5] information about the position within the input vector to the 
forecasting model (e.g., daily average temperature of 4 days before), information about the real day of each 
input variable (e.g., time series) 

• Institutional / relational processes: [4] training in statistics and best practices in data, coding and informatics, 
theoretical knowledge, leadership, interdisciplinary collaboration and communication skills; organisational 
support with phased funding transition to move from research to operations and sustain operational 
forecasting capabilities; shifts in scientific culture to encourage engagement in iterative forecasting; for 
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decision-making, long-term partnerships between researchers and managers to improve both forecasts and 
their uses. 

• Others: [4] open and reproducible science, with reducing data latency and increasing automation for 
problems amenable to frequent forecasts; development of a forecasting synthesis centre for technology, 
training, theory, and methods development. 

Key opportunities and constraints/risks associated with role(s) 

• Opportunities:  

[1] align irrigation and orderings, with reducing evaporation and operation losses.  

[2] Prevent impacts of waterlogging and rising water tables and enhance water use efficiency.  

[3] account for regime changes under different dry, moderate and wet scenarios and integrate surface 

with groundwater data. To address uncertainty of hydrometeorological estimates, quantification of the 

sensitivity of groundwater variability to the uncertainty in the meteorological input estimation and 

development of the approach at the aquifer scale.  

[4] evaluate and identify options better accounting for ecological requirements; link iterative near-term 

forecasts with adaptive management and other iterative policy rules. 

• Risk:  

[3] absence of pumping data and use of crop water demand as a proxy for human impacts. Assumption 

that the amount of water pumped, and available surface water are proportional to the evapotranspirative 

needs of crops. Use of monthly hydrometeorological forecasts as inputs.  

[4] Mindsets and resources 

1. Potential stakeholders 

• MI, CICL: scheduling water charges annually, ordering and delivery of regulated water, environmental 
watering, storage and channel maintenance; water quality and groundwater monitoring (September and 
March). For CICL, setting and enforcing sustainable extraction limits for groundwater. 

• Department of Water and Energy (DWE): Monitoring of groundwater levels and quality in CICL.  

• WaterNSW: Provision of water to Berembed and Gogeldrie Weirs, at MI and CICL offtakes.  

• Farmers in MI and CICL: Decision choice of water sources; purchase of GS and HS licences for using 
groundwater and surface water; ordering of regulated surface water. 

• Independent Pricing and Regulatory Tribunal (IPART): Influence water prices for water in irrigation districts by 
setting bulk water charges to be recovered and returned to the MDBA and WaterNSW. 

2. Information source used to identify and the develop use case 
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Amaranto, A., Munoz-Arriola, F., Corzo, G., Solomatine, D. P., & Meyer, G. (2018). Semi-seasonal groundwater 

forecast using multiple data-driven models in an irrigated cropland. Journal of Hydroinformatics, 20(6), 1227–

1246. https://doi.org/10.2166/hydro.2018.002 

CICL. (2023). Annual Compliance Report 2023 [Compliance report]. Coleambally Irrigation Co-operative Limited. 

https://www.colyirr.com.au/annual-compliance-report 

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. 

A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B. C., Randerson, J. T., Read, E. K., 

Tredennick, A. T., Vargas, R., Weathers, K. C., & White, E. P. (2018). Iterative near-term ecological forecasting: 

Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences, 115(7), 1424–1432. 

https://doi.org/10.1073/pnas.1710231115 
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event occurrence at farm level using optimal decision trees. Computers and Electronics in Agriculture, 157, 173–

180. https://doi.org/10.1016/j.compag.2018.12.043 

González Perea, R., Camacho Poyato, E., & Rodríguez Díaz, J. A. (2024). Attention is all water need: Multistep time 

series irrigation water demand forecasting in irrigation districts. Computers and Electronics in Agriculture, 218, 

108723. https://doi.org/10.1016/j.compag.2024.108723 

Hope, M., & Wright, M. (2003). Murrumbidgee Catchment Irrigation Profile (NSW Catchments and Regions) 

[Irrigation Profile]. Water Use Efficiency Advisory Unit, State of New South Wales. 

https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/164395/sum-irrigation-profile-murrumbidgee.pdf 

MI. (2016). Annual Compliance Report 2015/16 [Compliance report]. Murrumbidgee Irrigation Limited. 

https://www.mirrigation.com.au/ArticleDocuments/242/ACR%202015-16.pdf.aspx?embed=Y 
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Appendix C. Irrigation district operations and 
coordination with other actors 

Opportunities for demand forecasting to tackle some challenges related to the use case. 

(Numbers under brackets aim to link comments to the example demand forecast models) 

What role(s) could demand forecasting fill? 

[1] Anticipate water restriction events under different climate scenarios. This role includes the consideration of 

prolonged dry conditions and high flow events that could hinder monitoring of surface water availability. 

[2] Anticipate climate and maintenance impacts on the alignment of water orders and flow regime requirements. 

[3] Estimate off-stream storages’ lag time to refill/ emptying events. This role aims to inform operation decisions, 

including investments in supply and demand management options.  

[4] Estimate the risk from contract agreements or incentives. This role aims to consider the influence of farmers’ 

locks-in contracts or incentives on farmers’ behaviour and planting of water intensive crops, especially under 

inadequate climate conditions. 

Do existing demand forecasting or alternative algorithms exist to fill these roles? 

• [1] Transformer neural network (TNNs) model, optimised by NSGA-II to forecast daily irrigation water 7 days 
ahead and automatically adaptation throughout the irrigation season. Account for water management and 
energy contracting in irrigation districts considering current and expected scenarios of water scarcity and high 
energy prices (González Perea et al., 2024). 

• [2] Joint structured and unstructured information sharing i.e., mixed demand forecasting and engagement 
approaches for operation and strategic coordination under different levels of demand uncertainty (Li et al., 
2019). 

• CARM (Computer Aided River Management) system, developed by DHI consulting for WaterNSW to enhance 
weirs and dams’ operations in the Murrumbidgee River system and reduce operation losses. CARM is driven 
by MIKE OPERATIONS and integrates models reproducing key catchment and river processes with real-time 
measurements. The objective is to provide river operators with an overview of current and forecasted water 
inflows to inform operation decisions and ensure reliable deliveries to relevant locations at the right time. 
Build-in models consist of NAM Rainfall Runoff model (MIKE 11 NAM) to describe rainfall and runoff; MIKE for 
evaluating groundwater seepage and surface water evaporation; MIKE 11 (MIKE HYDRO River) to account for 
river hydraulics and storages in the river, at weirs and in wetlands (van Kalken, 2012). In 2018, rolling-out a 
derived version of CARM, CARM Lite across all regulated valleys in NSW was considered by the NSW 
Government to predict tributary inflows and improve the effectiveness of water operations (IPART, 2019). 

What is needed for demand forecasting to be useful / feasible? 

• Data / knowledge: [1] information about the position within the input vector to the forecasting model 
(e.g., daily average temperature of 4 days before), information about the real day of each input variable 
(e.g., time series)  

Key opportunities and constraints/risks associated with role(s) 

• Opportunities:  

(CICL, 2023) Accessibility to high-resolution temporal data and consideration of soil water balance models 

to enhance the estimate of ETa values, especially capturing ETa from rainfall events, and get a more 

comprehensive understanding of water use dynamics.  

[2] Research applications in the Australia contexts to evaluate coordination practices across strategic and 

operational levels.  
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Potential stakeholders 

• MI, CICL: ordering and delivery of regulated water, environmental watering, storage and channel 
maintenance; surface water monitoring; system upgrade; manual or automatic operations of the irrigation 
system; water quality monitoring. For CICL, fill/release to Tombullen Storage.  

• WaterNSW: Provision of water to Berembed and Gogeldrie Weirs, at MI, CICL and private irrigation 
companies’ offtakes; conveyance of minimum flows to ecological systems (Lowbidgee wetlands and Yanco 
Creek); management of water in Tombullen storage.  

• Farmers in MI and CICL, private irrigators: daily ordering of regulated surface water. For private land owners in 
CICL (western), voluntary involvement in environmental watering actions.  

• DPIE: assessment of annual water availability; since 2015, works with CICL to deliver water to natural wetlands 
with Coleambally Irrigation Area 

• Environmental water holder and OEH: Ensure connectivity of and water provisioning to key ecosystems in the 
Murrumbidgee Catchment and Murray River to ensure functionality, services, and biodiversity conservation. 

Information source used to identify and develop the use case 

Allen, S. (2019). Murrumbidgee Surface Water Resource Description—Appendix A (INT17/224700). NSW 
Department of Industry. https://www.industry.nsw.gov.au/__data/assets/pdf_file/0017/230228/appendix-a-
murrumbidgee-sw-wrp-resource-description.pdf 

CICL. (2022a). Steps for managing a restriction or constraint [Irrigation District website]. Coleambally 
Irrigation - Fact Sheets. https://www.colyirr.com.au/fact-sheets 

CICL. (2022b). Environmental water delivery [Irrigation District website]. Coleambally Irrigation - 
Environment. https://www.colyirr.com.au/environmental-water-
delivery#:~:text=CICL%20has%20been%20working%20with,no%20longer%20receive%20an%20adequate 

CICL. (2023). Annual Compliance Report 2023 [Compliance report]. Coleambally Irrigation Co-operative 
Limited. https://www.colyirr.com.au/annual-compliance-report 

González Perea, R., Camacho Poyato, E., & Rodríguez Díaz, J. A. (2024). Attention is all water need: Multistep 
time series irrigation water demand forecasting in irrigation disctrics. Computers and Electronics in 
Agriculture, 218, 108723. https://doi.org/10.1016/j.compag.2024.108723 

IPART. (2019). WaterNSW Operational Audit 2019 [Compliance report Water]. Independent Pricing and 
Regulatory Tribunal. https://www.ipart.nsw.gov.au/sites/default/files/documents/report-to-the-minister-
waternsw-operational-audit-2018-19-18-december-2019.pdf 

Knight Merz, S. (2011). Environmental Water Delivery: Murrumbidgee Valley, January 2012 V1.0. 
Commonwealth Environmental Water, Department of Sustainability, Environment, Water, Population and 
Communities. https://www.dcceew.gov.au/sites/default/files/documents/ewater-delivery-murrumbidgee-
valley.pdf 

Li, S., Cui, X., Huo, B., & Zhao, X. (2019). Information sharing, coordination and supply chain performance. 
Industrial Management & Data Systems, 119(5), 1046–1071. https://doi.org/10.1108/IMDS-10-2018-0453 

MI. (2016). Annual Compliance Report 2015/16 [Compliance report]. Murrumbidgee Irrigation Limited. 
https://www.mirrigation.com.au/ArticleDocuments/242/ACR%202015-16.pdf.aspx?embed=Y 

MI. (2021). Murrumbidgee Irrigation Limited’s Roaches Surge Reservoir Project CONTRACT MI-PRO-CON-
10052: DESIGN AND CONSTRUCTION (Expression of Interest 341391083/v1). Murrumbidgee Irrigation 
Limited. 
https://www.mirrigation.com.au/ArticleDocuments/12/EOI%20Roaches%20Surge%20Reservoir%20301121
.pdf.aspx 

Van Kalken, T., Nachiappan, N., Berry, D., & Skinner, J. (2012). An optimized, real time water delivery and 
management system for the Murrumbidgee River (S. P. Westra, Ed.). Engineers Australia. 
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Appendix D. Water trading in the Lower Murrumbidgee 
River Catchment 

Opportunities for demand forecasting to tackle some challenges related to the use case. 

(Numbers under brackets aim to link comments to the example demand forecast models) 

What role(s) could demand forecasting fill? 

[1] Evaluate the implications of trading unregulated water, new trading products, and changes to trading rules and 

processes on regulated water demand and type of water allocation licenses. 

[2] Anticipate farmers’ water trading behaviour. 

[3] Evaluate the implications of socioeconomic and ecological changes on water prices and trading opportunities. 

[4] Anticipate the impacts of releases from Snowy Hydro on water trading dynamics. 

Do existing demand forecasting or alternative algorithms or strategies exist to fill these roles? 

• [1] ANN approach for forecasting seasonal water allocations and water trading prices, to aid farmers in land 
and water management (Khan et al., 2010). Khan et al. (2010) explored management of uncertain water 
allocations and water trading prices in the Murray River Basin and in relation to water operations from Murray 
Irrigation Limited 

• [2] Season-ahead hydrologic forecast to anticipate water user decision making (trading or not trading) in semi-
arid regions. Use of a five-phase forecast approach of (1) streamflow and allocation estimates, (2) crop-water 
and farm-scale profit optimisation, (3) endowment-based water trade rulesets based on market-scale trade, 
(4) inter-cooperative water trade (option contract trading) forecast, (5) risk tolerance effect on forecast uptake 
(Delorit & Block, 2020). 

What is needed for demand forecasting to be useful / feasible? 

• Data / knowledge: land use and water use per crop types as proxies for change in irrigation water production 
(Aither, 2017). [1] global sea surface temperature, Southern Oscillation Index for the past 100 years, average 
monthly rainfall data over 8 years, average monthly water trading volumes and prices over 8 years. [2] season-
ahead inflows in reservoirs, mean annual allocation values, estimation of yields and profit from crops (crop 
type cooperatives, per ha), market prices of crop products with a 6-month lead. 

• Institutional / relational processes: education on water trade; enhanced transparency and pace for 
assessment and approval processes; refinement of the operation of some trade rules; improved information 
delivery about water availability and water trade on DPI websites; improved information on key trading rules 
(Aither, 2017). [2] interactions with farmers of varied crop types to understand decisions. 

• Other elements: investigation of demand for unregulated trade and impacts of new trading products or 
changes to rules and processes to ease trade (Aither, 2017). 

Key opportunities and constraints/risks associated with role(s) 

• Benefits/opportunities:  

[2] Ground-truthing risk attitudes through focused interactions with farmers of varied crop types to 

confirm risk attitude modelling.  

• Risk: [2] unknown true nature of risk attitude towards confidence in forecasts; limitation to the total number 
of alternative simulated for trading options. 

Potential stakeholders 
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• NSW DCCEEW: assessment of water availability and announcement of Available Water Determination (AWD) 
on the 1st of July and periodically throughout the year; announcement of supplementary water events; set 
trade and other management rules; responsible for water accounting and reporting. 

• Environmental water holder and OEH: decisions for carry-over or trading supplementary and GS entitlements 
based on unused water, watering needs, generation of revenues, delivery of water on behalf of OEH (NSW 
Office of Environment and Heritage), potential for piggy backing. 

• WaterNSW: Based on AWD, credit the accounts of licenced water users with the volume of water specified 
and allow licensees to take additional water based on their account balance and licence conditions; 
responsible for metering and compliance activities facilitating water users understanding of their rights and 
obligations. 

• Small entitlement holders: Expected to participate more in water trades based on less reliable allocations (GS), 
based on water prices for irrigation or opportunities for paying charges or improving farm operations.  

• HS farmers: expected to participate less in water trading due to more reliable entitlements. 

• Aquifer entitlement holders: expected to participate in trade when surface water allocations are low, but 
restricted to 2 ML per unit share. 

Information source used to identify and develop the use case 

AITHER. (2017). Water markets in New South Wales—Improving understanding of market fundamentals, 
development, and current status [Final report for NSW Department of Primary Industries Water]. Aither Pty 
Ltd. https://aither.com.au/water-markets-in-new-south-wales/ 

Delorit, J. D., & Block, P. J. (2020). Cooperative water trade as a hedge against scarcity: Accounting for risk 
attitudes in the uptake of forecast-informed water option contracts. Journal of Hydrology, 583, 124626. 
https://doi.org/10.1016/j.jhydrol.2020.124626 

Khan, S., Dassanayake, D., Mushtaq, S., & Hanjra, M. A. (2010). Predicting water allocations and trading 
prices to assist water markets. Irrigation and Drainage, 59(4), 388–403. https://doi.org/10.1002/ird.535 
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Appendix E. Water delivery during and after 
supplementary events in dry years 

Opportunities for demand forecasting to tackle some challenges related to the use case. 

(Numbers under brackets aim link comments to the example demand forecast models) 

What role(s) could demand forecasting fill? 

[1] Anticipate risks of restriction after supplementary events  

[2] Evaluate the potential for piggybacking for Mid-Murrumbidgee wetlands  

[3] Anticipate event timing and capacity to store supplementary water 

[4] Anticipate farmers’ demand for supplementary water  

[5] Anticipate the costs for maintaining and managing assets  

Do existing demand forecasting or alternative algorithms or strategies exist to fill these roles? 

• [1] Synthetic short-term forecasts using a policy tree optimization algorithm for improving reservoir operations 
for flood control and water supply objectives and informing forecast-based policies. Based on increasing 
conjunctive use capacity (Nayak et al., 2018) 

• [2] Probabilistic fluvial flood forecasts for flood early warning (Arnal et al., 2020) 

What is needed for demand forecasting to be useful / feasible? 

• Data / knowledge: On-farm storage data; [1] daily inflow to reservoirs based on daily precipitation and 
maximum temperatures over 100 years; 1-30 days ahead daily precipitation and temperature numerical 
weather prediction model forecasts based on sub-seasonal to seasonal prediction project database from more 
recent data over 12 years. 

• Institutional / relational processes: [2] enabling co-design of the probabilistic forecasting system and a risk-
based decision-making framework between forecasters and national/state agencies; define guidelines for 
operating procedures for using probabilistic forecasts in practice in combination with tools currently used; 
communicate with internal and external players to inform about the use of probabilistic forecasts and their 
benefits over deterministic forecasts. 

• Other: [2] Adapting existing wider flood management priorities (e.g., warning lead times)  

Key opportunities and constraints/risks with role(s) 

• Constraints: [2] complex and require a full understanding of probabilities, risks, uncertainty and the systems 
modelled as well as set rules, such as threshold exceedance, to avoid missing an event. Other influential 
factors include identifying the type of event (e.g., localised small event or large-scale), costs of taking action, 
decision-makers’ experience, trust in the forecast, risk aversion, cultural context in which decisions are made. 

• Opportunities: [1] consider hourly data for improving reservoir operations, especially for high flow event 
control. Support banking groundwater in a conjunctive use system and forecast skills. Could support multi-
reservoir policies.  

Potential stakeholders 

• DPI Water: Announcement of supplementary events 

• MI and CICL: Estimation of supplementary water orders to WaterNSW; announcement of the location and 
duration of supplementary events; management of excess water. 

• Environmental water holder: Consideration of supplementary allocations for watering actions or carry over of 
a proportion. Consideration of potentially prolongation of watering actions post-supplementary events based 
on piggyback. Payment of charges for using CICL network. 

• WaterNSW: Ordering of water a week in advance, in anticipation of announcements of supplementary events; 
Management of rain rejections at Bundidgerry Creek. 

• Farmers in MI and CICL: storage of supplementary water on-farm 
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Information source used to identify and develop the use case 
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(2020). “Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line perspectives on 
transitioning to probabilistic fluvial flood forecasts in England. Geoscience Communication, 3(2), 203–232. 
https://doi.org/10.5194/gc-3-203-2020 

CICL. (2023). Annual Compliance Report 2023 [Compliance report]. Coleambally Irrigation Co-operative 
Limited. https://www.colyirr.com.au/annual-compliance-report 

Commonwealth of Australia. (2023). Commonwealth Environmental Water Holder Water Management Plan 
2023-24 (CC BY 4.0). Commonwealth of Australia. 
https://www.dcceew.gov.au/water/cewo/publications/water-management-plan-2023-24 

DPI Water. (2015). How water is shared in the regulated Murrumbidgee Valley. NSW Department of Primary 
Industries - Water. https://www.industry.nsw.gov.au/__data/assets/pdf_file/0004/166279/How-water-is-
shared-in-the-regulated-murrumbidgee-valley.pdf 

Knight Merz, S. (2011). Environmental Water Delivery: Murrumbidgee Valley, January 2012 V1.0. 
Commonwealth Environmental Water, Department of Sustainability, Environment, Water, Population and 
Communities. https://www.dcceew.gov.au/sites/default/files/documents/ewater-delivery-murrumbidgee-
valley.pdf 
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https://www.mirrigation.com.au/ArticleDocuments/242/ACR%202015-16.pdf.aspx?embed=Y 

Nayak, M. A., Herman, J. D., & Steinschneider, S. (2018). Balancing Flood Risk and Water Supply in 
California: Policy Search Integrating Short-Term Forecast Ensembles With Conjunctive Use. Water 
Resources Research, 54(10), 7557–7576. https://doi.org/10.1029/2018WR023177 

NSW Government. (2016). Water Sharing Plan for the Murrumbidgee Regulated River Water Source 2016. 
NSW Government. https://water.dpie.nsw.gov.au/our-work/plans-and-strategies/water-sharing-
plans/status/murrumbidgee-region 

 

 

 


